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Abstract

In this paper, the Euler number e, the Euler sequence and its application in real life situations
particularly in business world ( financial investment ) are discussed. A basic theorem concerning
convergence of the Euler sequence in which some lemmas were considered in order to achieve the
proof of the theorem is presented.
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The paper showed the application of the Euler sequence in continuous compounding and the
development of a new formula (INTEREST FORMULA) in continuous compounding. To achieve
this, the convergence of the Euler sequence to the Euler number e was established and finally, its
application in continuous compounding and some striking examples are shown.

Keywords: The Euler number; the Euler sequence; continuous compounding.

1 Introduction

The first reference to the constant, the Euler number, were first published in 1618 in the table of an
appendix of a work on logarithms by John Napier. However, this did not contain the constant itself,
but simply a list of logarithms calculated from the constant. It is assumed that the table was written
by William Oughtred. The discovery of the constant itself is credited to Jacob Bernoulli who in
1683 attempted to find the value of the expression (which is in fact e), limn→∞

(
1 + 1

n

)n
when he

was examining continuous compound interest. The first known use of the constant, represented by
b, was in correspondence from Gottfried Leibniz to Christiaan Huygens in 1690 to 1691. Leonhard
Euler introduced the letter e as the base for natural logarithms, writing in a letter to Christian
Goldbach on 25 November 1731. He made various discoveries regarding e in the following years,
but it was not until 1748 when Euler published introductio in analysin infinitorum that he gave
a full treatment of the ideas surrounding e. He showed that e = 1

0!
+ 1

1!
+ 1

2!
+ 1

3!
+ 1

4!
+ 1

5!
· · · [1]

and that e is the limit of
(
1 + 1

n

)n
as n tends to infinity.

The application of the Euler sequence
(
1 + 1

n

)n
in continuous compounding is of interest in this

paper, considering the basic theorem and some lemmas in mathematical analysis in its accomplishment.

2 The Euler Sequence

Definition 1. A sequence {xn }∞n=k of the form
{
( 1 + 1

n
)n
}∞
n=k

where k ∈ N, is called the Euler
sequence.

Theorem 1. The Euler sequence xn := ( 1 + 1
n
)n converges to e; where

e := lim
n→∞

(
1 +

1

n

)n

Lemma 1. Let n ∈ N ∪ { 0 }, then 1
n!

≤ 1
2n−1 .

Proof: The proof of the above lemma by mathematical induction is thus:

Let p(n) :=
1

n!
≤ 1

2n−1

then p(0) =⇒ 1

0!
≤ 1

2−1

=⇒ 1 ≤ 2. Therefore, p(0) is true.

Assume that p(k) is true for some k ∈ N. That is 1

k!
≤ 1

2k−1
.
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Next, showing that p(k + 1) is also true ∀ k ∈ N.
1

(k + 1)!
=

1

(k + 1)k!
=

1

(k + 1)
· 1

k!
≤ 1

(k + 1)
· 1

2k−1

Observe that k + 1 ≥ 2 for all k ∈ N.

But k + 1 ≥ 2 =⇒ 1

k + 1
≤ 1

2
.

So that
1

(k + 1)
· 1

2k−1
≤ 1

2
· 1

2k−1
=

1

2
· 2

2k
=

1

2k

=⇒ 1

(k + 1)!
≤ 1

2k
.

Therefore, the inequality is true for all integers n ∈ N ∪ { 0 }.

Lemma 2. (Bernoulli’s inequality) Let 1+ p > 0, p ̸= 0. Then for every integer n ≥ 2, we have
(1 + p)n > 1 + np.

Proof: Proof of the above lemma by mathematical induction.

Let p(n) := ( 1 + p )n > 1 + np.

then p(2) =⇒ ( 1 + p )2 = 1 + 2p+ p2 > 1 + 2p, since p2 > 0 ∀ p ∈ (−1 , ∞ ) \{ 0 }.
Therefore, p(2) is true. Assume that p(k) is true for some k ∈ N.

That is ( 1 + p )k > 1 + kp for all p ∈ (−1 , ∞ )\{ 0 }.
Showing that p(k + 1) is also true ∀ k ∈ N and for all p ∈ (−1 , ∞ )\{ 0 }.

( 1 + p )k+1 = ( 1 + p )k( 1 + p ) > ( 1 + kp )( 1 + p )

but, ( 1 + kp )( 1 + p ) = 1 + ( k + 1 )p+ kp2 > 1 + ( k + 1 )p, since kp2 > 0

=⇒ ( 1 + p )k+1 > 1 + ( k + 1 )p

Therefore, the inequality is true for all integers n ≥ 2.

See also Chidume C. E. and Chidume C. O. [2]

At this point, the proof of Theorem 1 is produced.

Proof: First, proof that xn := ( 1 + 1
n
)n is bounded. By Binomial expansion,(

1 +
1

n

)n

= 1 + n · 1
n
+

n(n− 1)

2!
· 1

n2
+

n(n− 1)(n− 2)

3!
· 1

n3
+ · · ·+ n(n− 1) · · · 3 · 2 · 1

n!
· 1

nn

= 2+
1

2!

(
1− 1

n

)
+

1

3!

(
1− 1

n

)(
1− 2

n

)
+· · ·+ 1

n!

(
1− 1

n

)(
1− 2

n

)
· · ·
(
1− n− 1

n

)
With all the brackets on the right hand side being positive numbers, then:

2 < 2 +
1

2!

(
1− 1

n

)
+

1

3!

(
1− 1

n

)(
1− 2

n

)
+ · · ·+ 1

n!

(
1− 1

n

)(
1− 2

n

)
· · ·
(
1− n− 1

n

)
and

2+ 1
2!

(
1− 1

n

)
+ 1

3!

(
1− 1

n

) (
1− 2

n

)
+ · · ·+ 1

n!

(
1− 1

n

) (
1− 2

n

)
· · ·
(
1− n−1

n

)
< 2+ 1

2!
+ 1

3!
+ · · ·+ 1

n!

=⇒ 2 < ( 1 + 1
n
)n < 2 + 1

2!
+ 1

3!
+ · · ·+ 1

n!
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but,

2 +
1

2!
+

1

3!
+ · · ·+ 1

n!
< 2 +

1

2
+

1

22
+

1

23
+ · · ·+ 1

2n−1
By Lemma 1

2 +
1

2
+

1

22
+

1

23
+ · · ·+ 1

2n−1
= 1 + 1 +

1

2
+

1

22
+

1

23
+ · · ·+ 1

2n−1︸ ︷︷ ︸
Sn

Sn is a geometric series, hence Sn =
1(1−( 1

2
)n)

(1− 1
2
)

= 2(1 − ( 1
2
)n) < 2 ∀ n ∈ N. Therefore,

2 + 1
2!

+ 1
3!

+ · · · + 1
n!

< 1 + 2 = 3. Hence, 2 < ( 1 + 1
n

)n < 3. Which shows that ( 1 + 1
n

)n is
bounded.

See also Malik S. C. and Savita A. [3]

Next, is to show that ( 1 + 1
n
)n is monotone. Since

xn =

(
1 +

1

n

)n

take xn−1 =

(
1 +

1

n− 1

)n−1

So that

xn

xn−1
=

(
n2 − 1

n2

)n(
n

n− 1

)
=

(
1− 1

n2

)n (
n

n− 1

)
n ≥ 2(

1− 1

n2

)n(
n

n− 1

)
>

(
1− 1

n

)(
n

n− 1

)
(By Bernoulli inequality)(

1− 1

n

)(
n

n− 1

)
= 1

=⇒ xn

xn−1
> 1

=⇒ xn > xn−1 ∀ n ≥ 2

See also Chidume C. E. and Chidume C. O. [2]

Therefore xn is monotone increasing. Since xn is bounded and monotone, it converges.

Next shows that the limit of xn, n → ∞ is the Euler number e. Recall, that it was earlier shown
that 2 < ( 1 + 1

n
)n < 3. Also note that(

1 +
1

n

)n

= 2+
1

2!

(
1− 1

n

)
+

1

3!

(
1− 1

n

)(
1− 2

n

)
+· · ·+ 1

n!

(
1− 1

n

)(
1− 2

n

)
· · ·
(
1− n− 1

n

)
=⇒ 2 < 2+ 1

2!

(
1− 1

n

)
+ 1

3!

(
1− 1

n

) (
1− 2

n

)
+ · · ·+ 1

n!

(
1− 1

n

) (
1− 2

n

)
· · ·
(
1− n−1

n

)
< 3. Now, by

taking the limits of all sides of the last inequality to get:
limn→∞ 2 < limn→∞

(
2 + 1

2!

(
1− 1

n

)
+ 1

3!

(
1− 1

n

) (
1− 2

n

)
+ · · ·+ 1

n!

(
1− 1

n

) (
1− 2

n

)
· · ·
(
1− n−1

n

))
<

limn→∞ 3 =⇒ 2 < 2+ 1
2!
+ 1

3!
+ 1

4!
+ 1

5!
+ · · · < 3. But, ex = 1

0!
+ x

1!
+ x2

2!
+ x3

3!
+ x4

4!
+ x5

5!
+ x6

6!
· · · [4].

Take x = 1 therefore e1 = e = 1
0!
+ 1

1!
+ 1

2!
+ 1

3!
+ 1

4!
+ 1

5!
· · · but, 2 < 1

0!
+ 1

1!
+ 1

2!
+ 1

3!
+ 1

4!
+ 1

5!
· · · < 3

=⇒ 2 < e < 3. Hence, limn→∞( 1 + 1
n
)n = e.

3 Continuous Compounding

This section discusses the application of the Euler sequence in continuous compounding. Continuous
compounding is a very crucial concept in financial mathematics and its application in business world
( Financial investment ) cannot be underestimated. In financial mathematics, FV = PV

(
1 + r

n

)n

4
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as the formula for compound interest compounded “n” times in a year. Therefore for “t” years,
FV = PV

(
1 + r

n

)nt
, where FV = Future Value, PV = Present Value, r = Annual interest rate,

t = Number of years, n = Frequency of compounding.

See also Campbell S. [5]

It is important to note that the more frequent an investment is compounded, the greater the
return it will produce. However, there is a limit on the interest accumulation (lim(FV − PV )),
irrespective of how frequent the compounding is (n → ∞ ). Therefore,

lim
n→∞

(FV − PV ) = lim
n→∞

(
PV

(
1 +

r

n

)nt

− PV

)
= lim

n→∞

(
PV

((
1 +

r

n

)nt

− 1

))
(3.1)

= PV lim
n→∞

((
1 +

r

n

)nt

− 1

)
= PV

(
lim

n→∞

(
1 +

r

n

)nt

− lim
n→∞

1

)
(3.2)

but, limn→∞ 1 = 1 and limn→∞ PV = PV since PV is a constant.

Estimating the limn→∞
(
1 + r

n

)nt
. Take n = kr, where k ∈ N

and r is a constant. So that n → ∞ =⇒ kr → ∞ =⇒ k → ∞ since r is a constant.

lim
n→∞

(
1 +

r

n

)nt

= lim
k→∞

(
1 +

r

kr

)krt
= lim

k→∞

(
1 +

1

k

)krt

lim
k→∞

(
1 +

1

k

)krt

=

(
lim
k→∞

(
1 +

1

k

)k
)rt

= ert ( By theorem 1 )

From Equation 3.1, Equation 3.2 and Theorem 1,

lim
n→∞

(FV − PV ) = PV

(
lim

n→∞

(
1 +

r

n

)nt

− lim
n→∞

1

)
= PV

(
ert − 1

)
But, FV − PV = INTEREST and INTEREST is a constant, therefore,

lim
n→∞

(FV − PV ) = PV
(
ert − 1

)
(3.3)

=⇒ lim
n→∞

(INTEREST ) = PV
(
ert − 1

)
(3.4)

=⇒ INTEREST = PV
(
ert − 1

)
( INTEREST FORMULA ) (3.5)

=⇒ FV − PV = PV ert − PV (3.6)

=⇒ FV = PV ert (3.7)

This is the formula for continuous compounding often used in business world (Financial investment)
today.

It should be noted that in the process of showing the formula for continuous compounding, a very
important formula is produced, and that is:

INTEREST = PV
(
ert − 1

)
( INTEREST FORMULA )

5
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4 Examples

This section considers some examples on continuous compounding discussed in the previous section.

Example 1: In a financial investment, the amount accumulated after “t” years is directly proportional
to the investment made. In this arrangement, if an investment of $20,000 accumulates to
$45,000 after 5 years calculate:

a The rate at which the investment is made;

b The future value of the investment made after 10 years; and

c The interest earned from the investment after 15 years.

Solution: Let Pt be the accumulated investment after “t” years and at t = 0 take P0 as the
initial investment. So that:

a From the question, dPt
dt

α Pt. But,

dPt

dt
α Pt =⇒ dPt

dt
= rPt where r is a constant (4.1)

=⇒ dPt

Pt
= rdt (4.2)

Integrating both sides:

∫
dPt

Pt
=

∫
rdt (4.3)

=⇒ loge Pt = rt+ k (4.4)

=⇒ Pt = ert+k (4.5)

= ert · ek take ek = A (4.6)

Hence, Pt = A · ert (4.7)

See also [6]
At t = 0, P0 = A · e0 = A =⇒ A = P0. Therefore Pt = P0 · ert. Comparing Pt = P0 · ert

with the continuous compounding formula, that is FV = PV ert shows that Pt = FV and
P0 = PV ; and therefore, the arrangement is a continuous compounding arrangement. Hence
FV = PV ert will be used in the computation.

Note that if not for the continuous compounding formula, the arrangement used in the
investment would not have known.

From the question above, the present Value ( PV ) = $20,000, Future Value ( FV ) =
$45,000, Time ( t ) = 5 years.

Using FV = PV ert, therefore,

$45, 000 = $20, 000e5r

=⇒ 2.25 = e5r

so that loge 2.25 = 5r

=⇒ r =
loge 2.25

5

Hence, r = 0.1622 (approx.) = 16.22%

6
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b FV = $20, 000 · e10×0.1622 = $101, 264.13 ( approx.)

c Using the interest formula, that is INTEREST = PV (ert−1), INTEREST = $20, 000(e15×0.1622−
1) = $207, 860.20 ( approx.)

Example 2: Mr. Thomas deposited $100, 000 compounded at 5% continuously for 5 years. How
much is his total interest at the end of the term?

Solution: Two different approaches are used here in order to investigate the easier method.

First method FV = PV ert = $100, 000×e5×0.05 = $128, 402.54 ( approx.), but, INTEREST
= $128, 402.54− $100, 000 = $28, 402.54

Second method Using INTEREST = PV (ert−1) =⇒ INTEREST = $100, 000(e5×0.05−1)
= $28, 402.54 ( approx.). Observe that using interest formula ( second method ) is better.

5 Conclusion

The authors showed the crucial roles which the Euler number and the Euler sequence played in
continuous compounding, and also were able to come up with a formula (INTEREST FORMULA)
which can be use in computing interest easily in continuous compounding problems considering
present value, rate and time. Some striking examples with regards to continuous compounding
were presented and solved.
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