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Electric power industry is continually adopting new techniques to improve the

reliability and efficiency of the energy system and to cope with the increasing

energy demand and the associated technical challenges. In recent years, the

maturation of Artificial Intelligence (AI) led researchers to solve various

problems in the power system by using AI techniques. Voltage Source

Converter is the result of advancements in the field of power electronics

and semiconductors technology, which holds a promising future for the

realization of smart grid, renewable energy integration, and HVDC

transmission system. Usually hit and trial method or the design engineer’s

experience is used for the manual tuning of the PI controllers, which cannot

yield superior performance. The process becomes more complicated when

multiple grids are involved, such as in VSC-based MTDC grids. This research

article use a deep learning optimization technique for the tuning of the VSC

controllers, which resulted in quick settling time, better slew rate, less

undershoot and low overshoot. The deep learning neural network is trained

through the Particle Swarm Optimization (PSO) algorithm to produce the best

possible tuned or optimally tuned parameters for the controllers. The optimal

tuning of the controller will result in an overall better performance of the

converter and the grid. A four-layered deep learning neural network and a

three-terminal MTDC grid were designed and simulated in MATLAB/SIMULINK

environment.
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1 Introduction

The power system is undergoing revolutionary changes due to technological

advancement, high computational resources, increasing demand, and focus on green

energy. Many countries such as China, E. U. members, Australia, etc., are working to shift

a significant proportion of their energy consumption from conventional to renewable

sources. As a result, there is an increased influx of renewable energy into the system.

However, the system cannot readily absorb and distribute this incoming energy. Unlike
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conventional sources, renewable energy sources cannot be

scheduled and are sometimes connected directly to the

distributed system instead of the transmission system (Freris

and Infield, 2008). The integration of such time variables and

distributed sources into the electrical network requires special

consideration.

Multi-terminal direct current (MTDC) grids are overlaying

their counterparts due to the advantages and flexibility in terms

of large-scale integration of remotely located renewable energy

resources into the existing AC grids (RODRIGUEZ and

ROUZBEHI, 2017). Energy conversion is done through

converters such as the matured line commutated converters,

the recent voltage source converter, the advanced modular

multilevel converter, etc., VSC is a developing technology

because of its benefits, such as independent power control,

low power loss, dynamic response, etc., (Reed et al., 2003).

Inside the VSC converter, PI controllers are used to control

the operation of the converter. PI controller is very famous in

industrial systems due to its ease of implementation and

robustness. The PI controller helps drive the system variables

to their target values through the variation of l gain and time

constant (O’Dwyer, 2009). The performance of the converter

depends on how accurately the controller is tuned. Typically, no

specialized or intelligent technique is adopted for the tuning

process; instead, the hit and trial method or the engineer’s

experience is used to tune the PI controller manually.

However, the situation becomes complex when multiple grids

are interconnected, such as in MTDC grids. So, with the

advancement in grid interconnection, an intelligent technique

must be adopted to tune the PI controllers, which can lead to

better response and performance. In this research article, a deep

learning technique is applied for the tuning of the controllers to

yield the best responses in terms of slew rate, settling time,

undershoot and overshoot. Although the transformation rate of

power generation, transmission, and distribution technology is

relatively slow, the power industry researchers are trying to apply

AI to every possible section of the power system. For instance, AI

has proven to be of great help in power system planning,

scheduling, and control (Madan and Bollinger, 1997; Yousaf

et al., 2021; Sharma et al., 2022).

2 Literature review

The majority of the industrial processes use PI controllers

due to their robustness and reliable performance. The recent

industrial advancement leads to the development of systems with

multipThele and complex closed-loop systems. The performance

of these systems greatly depends on how small is the error. So, the

tuning of the PI controller is important and directly impacts the

overall performance. The control loops for which random tuning

may not be sufficient are subjected to various tuning and

optimization techniques. A model predictive-based tuning

technique was presented in (O’Dwyer, 2003) which was

primarily designed to produce quarter decay responses. The

Direct Synthesis method (Seborg et al., 2004) is becoming

popular amongst engineers due to its ability to tune through a

single tuning parameter which has a significant effect on the

performance of the closed-loop. The AMIGO tuning rule is based

on the 63% step response experiment (Åström et al., 2006) The

objective of this method is to minimize error and disturbances.

The SIMC optimization or tuning method was obtained through

the reduction of the higher models using the half rule approach

(Skogestad, 2003).

In (He et al., 2000) an optimal tuning technique based on

LQR (Linear Quadratic Regulator) approach is presented. This

method is useful for the process that involves time delay and is of

low order. The proposed LQr criteria lead to the desired natural

frequency and damping ratio. In (Kookos et al., 1999) an online

PI controller tuning method for dead time processes is explained,

specifically suitable for various chemical processes. This model is

an approximation of various complex models such as the first-

order plus dead time model having large time constants. A

fractional-order proportional and derivative (FOPD) was

explained in (Li et al., 2010). This method is specifically

beneficial for the application of fractional-order controllers

having complicated closed loop. For closed loops systems a

droop control optimization (Khan and Ahmed, 2020)

technique is also widely used but it doesn’t involve

optimization on the controller level.

Moreover, Literature depicts multiple classical and modern

optimization or tuning techniques for the PI controller. Due to

the widespread industrial applications of the PI or PID controller,

it is a well-searched area. More than ninety percent of the

industrial system still uses PI or PID controllers due to its

ease of implementation and robustness.

Classical techniques are based on assumptions about the

plant and output. These assumptions help the controller to reach

the optimal setting (Liu and Ansari, 2020). However, classical

optimization techniques seem simple and robust, but the desired

response may not be obtained due to the assumptions involved.

Ziegler Nichols and Cohen Coons methods are among the

classical introductory techniques discovered. The Nichols

technique was based on the assumption (Izci, 2021), (Araki

and Unbehauen, 2020), while the Coons method involved the

FOLPD model (Ziegler and B Nichols, 1942), (Salunkhe et al.,

2018). Coons method was built on a better model, but there is no

significant difference between the performance of both methods.

Specifically, the Nichols method cannot evaluate system

parameters in an environment with noisy conditions. The

drawback associated with the Coons method under abnormal

conditions is the fact that it pushes the system towards instability.

It is evident from the literature that complex, intelligent

techniques were built from simple logic, such as the Immune

algorithm was inspired by the vertebrate immune system. It is a

system that protects the internal system from foreign objects. The
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optimum response is generated based on Learning about the

antigen to generate an optimized response (Sebtahmadi et al.,

2017).

Ant Colony Optimization technique was inspired by an ant

colony and is based on a meta-heuristic approach. This algorithm

works like insects looking out for food by following the optimal path

(Al-Mogren, 2008), (Dai et al., 2017). Genetic Algorithm (G.A.)

navigates the search, similar to the pattern of evolution in nature. It

utilizes cost functions and probabilistic rules (Gonçalves et al., 2018).

The name genetic comes from the fact that the solution is

represented in binary format which is similar to genetic

representation (Oshaba et al., 2017). The Differential Evolution

(D.E.) technique is used for problems that require numerical

optimization. This problem gradient is not known in detail to

complete this procedure. The need for a gradient is eliminated

because it works in a way that doesn’t require the need for a gradient

and results in quality (Geweda et al., 2017).

Another global optimization technique is Evolutionary

Programming (E.P.) which involves the steps of initialization,

mutation, competition, and reproduction. A quasi-random

sequence (QRS) is applied to generate the initial sequence

(Liang et al., 2020). Annealing (Badar et al., 2022), Vector

Support Machine (SVM) (Kumar et al., 2008) and Surface

Method response (Reynoso-Meza et al., 2016) are among the

other methods which are not too popular because these are very

specifically used for a narrow category of applications.

In one of the popular methods called Particle Swarm

Optimization, in search for the optima, a particle population

moves through the solution, while keeping track best solution

(local and global) (Najeeb et al., 2017). PSO leads to better

responses than G.A. The drawback of PSO is its property falls

into a local optimum. In this research, the PSO algorithm is used

to train the deep learning neural network. The normal way to

train the neural network is through the data sets, but in this

particular application due to the unavailability of the data set and

due to the nature of the problem PSO algorithm is used to train

the neural network (Zhao et al., 2015).

Inspired by the biological neural network, in Artificial Neural

Network (ANN) there are artificial neurons that can be

multilayered. To process the data, a connectionist approach is

applied (Ilten and Demirtaş, 2016). AI technology is based

fundamentally on ANN, extending to the concepts of deep

learning and machine learning. ANN is applied to solve

complex nonlinear problems. This research adopted a deep

learning technique due to its self-learning capability. The

successful implementation of deep learning networks depends

upon two key parameters, i.e., hidden layers and neurons in each

hidden layer. The performance of the deep learning network

depends upon the setting of these two key parameters. However,

setting themmanually or through the grid searchmethod is time-

consuming. PSO algorithm has a great potential to optimize

parameter settings (Behera et al., 2016). Apart from industrial

processes the applications relating to power system can be found

in the literature this research is focused on the power system

application and optimization (Ehsan et al., 2021; Shehzad et al.,

2021; Chi et al., 2021; Autonomous, 2021; Guasti Junior and

Santos, 2021; Lau and Lim, 2018; Fan et al., 2019; Hu and

Eberhart, 2002; Dashtdar et al., 2022; Soliman et al., 2021).

The novelty of this research lies in the selection of

optimization techniques, i.e., deep learning. The deep neural

network is trained through a particle swarm optimization (PSO)

algorithm. Previously deep Learning has been applied for image

processing, signal processing, computer vision, power system

planning, etc., But it has never been applied to the optimization

of a VSC controller in a power system setting. This research

focuses on the application of deep Learning for power system

optimization in a VSC-MTDC grid system.

This work can also be considered an improved version of our

previous work, in which fuzzy logic was applied to optimize such

systems (Qolomany andMaabreh, 2017). The results of this deep

learning optimization are much better than the fuzzy logic

technique, so it forms the foundation for applying the

artificial intelligence techniques for power system optimization

and control. The key contributions of this paper include:

1) An AI-based optimization technique has been exploited for

the optimization of power converters Controller (PI

tuning).

2) Optimization of the weights and biases of the neural network

has been undergone using the Particle Swarm Optimization

technique.

3) A step forward towards the application of AI on power systems.

4) Improved performance of the converter in terms of overall

stability, overshoot, undershoot, settling time, and slew rate.

5) Increased reliability of the system by combining the benefits

of AI-based optimization with the robustness of PI controller.

The paper is structured as follows:

The introduction section focuses on the background and the

need for an intelligent and self-learning optimization method for

power converters. The second section which is a literature review

covers all the significant work already done in this domain. It

includes all the optimization techniques that are reported and

can be applied to power system problems. It also mentions the

drawback of every technique and that is why need to improve the

existing techniques. In the third section of the methodology, we

covered the steps involved to realize our proposed solution. It

focuses on the construction of the deep learning network,

mathematical modeling, and how the PSO algorithm is applied

to optimize the weights and biases of the neural network itself.

The result and analysis section compares and analyzes the

obtained simulated results. From the graphs and table, the

superior performance of the proposed solution is proved as

compared to other traditional techniques.

The conclusion concludes the contribution of the proposed

strategy and it also mentions the future potential research areas
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in this domain to extend this optimization approach to other

converters.

3 Methodology

The deep Learning-based optimization process involves the

following steps and methodology.

3.1 Constructing a deep learning
algorithm

Deep Learning algorithms process the data through various

layers of neural network algorithms. In simple words, deep

learning refers to the training of the neural network. The

neural network consists of several neurons. A neuron can be

understood as a building block of a neural network. A network

comprises three layers, i.e., input layer, hidden layer, and output

layer. The two key hyperparameters that control the network

topology include the number of layers and the number of nodes

inside each hidden layer.

The input layer is responsible for passing on the initial

information to the network. The hidden layer is located

between the input and output layer, where all the

computations are performed. The outer layer is responsible

for producing the results based on the inputs and

computations. In the research problem investigated in this

article, we have two inputs [error (e) and the derivative of

error (de)]. We have three hidden layers, and each hidden

layer contains four neurons. The outputs are the optimized

parameters for the PI controller, i.e., “Kp” and “Ki.” Figure 1

shows the architecture of the constructed network.

The target value of the error is set at 1 × 10−4. It implies

that the network will keep searching for the PI controller’s

optimized parameters until the error value reaches the target

value.

3.2 Mathematical modeling

A feed-forward network architecture was chosen while

constructing the neural network (Babaie et al., 2019),

(Shehzad et al., 2021). In a feed-forward neural network, the

node connections don’t form a cycle. In this case, multiple layers

of computational units are connected in a feed-forward manner.

Figure 2 shows the interconnections of a feed-forward network

with two inputs (x1 � error, x2 � derivative of error), three

hidden layers (4 neurons in each layer) and two outputs

(y1 � kp and y2 � ki). “a” represents the pre-activation

function which is a weighted sum of inputs plus the bias. “h”

represents the activation function of a neuron which is a sigmoid

function.

A mathematical representation can help to understand the

whole interconnected network and the interaction of these

neurons with each other easily. Going forward, the format

used to indicate the weights and biases associated with a

neuron is as follows

W(layer number)(neuron number)(Input number)
b(layer number)(Bias number for that input)

Here, we have two inputs and four neurons in each hidden

layer. So, the corresponding weighted matrixes can be written as

(Chi et al., 2021),

W1 �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
w111 w112

w121 w122

w131 w132

w141 w142

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (1)

W2 �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
w211 w212

w221 w222

w231 w232

w241 w242

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (2)

W3 �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
w311 w312

w321 w322

w331 w332

w341 w342

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (3)

FIGURE 1
Designed deep learning neural network.
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W1, W2 andW3 represent the weighted matrixes of the

three hidden layers, respectively. The input matrix “X” is

shown in Eq. 4.

X � [x1

x2
] (4)

To compute the pre-activation functions for each neuron of

each hidden layer, consider the generic expression of the pre-

activation function shown in Eq. 5.

ai(x) � Wihi−1(x) + bi (5)

The activation at each layer is equivalent to applying a

sigmoid function to the pre-activation of that respected layer.

The expression for activation at each layer is depicted in Eq. 6.

hi(x) � g(ai(x)) (6)

Where “g” is called the activation function.

We can compute the pre-activation for each neuron of each

layer in the following manner (Autonomous, 2021).

a11 � w111x1 + w112x2 + b11 (7)
a12 � w121x1 + w122x2 + b12 (8)
a13 � w131x1 + w132x2 + b13 (9)
a14 � w141x1 + w142x2 + b14 (10)

Eqs 7, 8, 9, 10 represent the pre-activation for the four

neurons in the first hidden layer.

In short, the pre-activation of the first layer is given by

(Guasti Junior and Santos, 2021)

a1 � W1*x + b1 (11)

W1 is the matrix containing individual weights, and b1 is the

vector containing the individual bias associated with sigmoid

neurons. The activation for the first layer is

h1 � g(a1) (12)

Similarly, the pre-activation and activation functions for the

remaining layers can be computed following the above topology.

The normalized mean square error (NMSE) approach is used

to optimize the error values. The pseudo-code showing the input

arguments to the NMSE handle and the error calculation is given

by (Qolomany and Maabreh, 2017).

h = @ (x) NMSE (x, net, inputs, targets);

NMSE = mean (error.̂2)/mean [var (target′,1)];

Figure 3 represents the error histogram generated after the

training of a controller.

FIGURE 2
Interconnections of the designed network.

FIGURE 3
Error histogram.
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3.3 Particle swarm optimization

Considering the nature of the research problem, which

involves MTDC grids, many variables keep on varying. To

improve the accuracy of the deep learning algorithm, a PSO

algorithm is used to find the optimum values for the weights and

biases of the neural network. It also optimizes the computational

time and the fitting regression, along with minimizing the mean

square error. PSO was inspired form the swarm movement,

which depends upon the individual and neighboring

experience. PSO algorithm can be understood via four steps

approach. The first step is the initiation and selection of a random

population and particle, respectively. In the second step, the

fitness of the previous(Ppi) and the next(Pni) value is compared

to the search for the optimized solution in the space. The third

step is the selection of a local best and a global best(Gbi). The
positions are recorded for the next step. Mathematically (Najeeb

et al., 2017), it can be expressed through Eqs 13, 14.

Vk+1
i � w pVk

i + r1c1(Pni −Xk
i ) + r2c2(Gbi −Xk

i ) (13)
Xk+1

i � Xk
i + Vk

i (14)

WhereXi is the current position,Vi Is the speed of the particle, i

is the optimization vector, and k refers to the number of iterations.w

is the inertia weight factor. c1 is the cognitive coefficient, c2 is the

social coefficient. r1 and r2 are the random velocity values in the

search space. In the last step, the best particle is evaluated and saved;

this process continues until the end of the iteration. Eq. 15 presents

the objective function of the controller.

Of(X) � ∑n
i�1
mifi(X) (15)

fi is the performance index for the ith,mi is the weighting

factor applied to the ith sub-objective. Figure 4 represents

the pseudo-code of the PSO algorithm. The number of

iterations are directly related to the accuracy of the

optimized rersults. The optimized weight and biases are

the result of the PSO.

4 Result and analysis

A three-terminal VSC MTDC system with radial topology

has been built in SIMULINK to test the proposed optimization

strategy. The whole test system comprises of three AC grids

synchronized and connected with each other. The goal of the

system is do generate a stable DC output for a HVDC system

to ensure the reliable performance. The layout is shown in

Figure 5.

The system consists of three AC grids. The apparent power is

200 MVA, 230 kV, and the frequency is 50 Hz.

This section verifies the superior performance of the deep

Learning-based optimized PI controller by comparing it with a

randomly tuned PI controller. The performance parameters for the

designed system include DC voltage, active power, and reactive

power. We will compare the parameters like overshoot, undershoot,

settling time, etc., to verify the optimal performance.

FIGURE 4
PSO algorithm.

TABLE 1 Shows a comparison of an AI-based optimized PI controller
and a PI controller. It is verified from the values of the
performance parameters that the responses of the optimized
controller are better regarding the mentioned parameters in Table 1.

Parameter Value

Rated Aparent Power 200 MVA

Nominal Voltage 230 KV

Nominal Frequency 50 Hz

Carrier Frequency 1350 Hz

Number of Levels 3 level NPC converter

Length of Transmission Cable 100 Km

DC Cable Resistance 0.0195 Ω/Km

DC Cable Inductance 19 mH/Km

DC Cable Capacitance 220 nF/Km

Frontiers in Energy Research frontiersin.org06

Khan et al. 10.3389/fenrg.2022.1008099

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2022.1008099


4.1 DC voltage

A smooth output DC voltage ensures the stable operation

of the HVDC system and good power quality. To test our

designed system for the worst-case scenario, faults were

created. Figure 6 shows the response of the DC voltage for a

randomly tuned PI controller. While Figure 7 shows the curve

FIGURE 5
Three terminal VSC-MTDC system.

TABLE 2 Comparison of voltage.

Quantity Optimized PI Simple PI

Max overshoot 34.40% 35.07%

Settling time 0.159 s 0.278 s

Undershoot 1.958% 3.48%

Rise time 4.493 ms 1.921 m s

Slew rate 17.522 V/µs 16.809 µs

TABLE 3 Comparison of active power.

Quantity Optimized PI Simple PI

Max overshoot 8.107% 11.446%

Settling time 0.22 s 0.24 s

Undershoot 34.4% 7.93%

Rise time 218.567 ms 514.37 ms

Slew rate 16.846 V/s 1.393 V/s

FIGURE 6
Voltage Curve for a simple PI controller.

FIGURE 7
Voltage curve for the proposed controller.
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obtained after optimizing the PI controller using the proposed deep

learning strategy. It is evident that the performance of deep learning

optimization is superior in terms of various parameters, as shown in

Table 1.

Considering the time axis at t = 1.5 s, a −0.1p. u step is

introduced to the ref, DC voltage. At 2.5 s, a 3-phase to ground

fault is created. The proposed deep Learning-based optimized

system recovers in 0.083 s, whereas the simple controller

recovers in 0.205 s, confirming the superiority of the deep

learning optimization PI. Both these graphs show that for a

randomly tuned PI controller, the response is not smooth and

is oscillating, which can also lead to severe system damage. But

after applying the proposed strategy, the graph becomes stable

and smooth, even after the fault, ensuring a reliable and stable

system.

It should be noted that the simple PI in this paper refers to the

classic PI controller which is tuned by hit and trial method or

according to the experience of the design engineer. The

comparison is between the randomly tuned and the one tuned

with the proposed strategy. Other PI tuning techniques are

discussed in Section 1 of this paper along with their

advantages and disadvantages. Applying all those techniques

to pour specific converter problem and then comparing it

TABLE 4 Compares the performance parameters of the two reactive
power curves. It is evident that the optimized controller yields a
better response regarding the mentioned parameters in Table 3.

Quantity Optimized PI Simple PI

Max overshoot 3.719% 1.326%

Settling time 0.323 s 0.499 s

Undershoot 1.68 % 2.87 %

Rise time 13.048 ms 12.18 ms

Slew rate 12.536 V/s 11.7 V/s

TABLE 5 Comparison of reactive power.

Quantity Optimized PI Simple PI

Max overshoot 3.719% 1.326%

Settling time 0.323 s 0.499 s

Undershoot 1.68% 2.87%

Rise time 13.048 ms 12.18 ms

Slew rate 12.536 V/s 11.7 V/s

FIGURE 10
Reactive Power Curve for a simple PI Controller.

FIGURE 11
Reactive power curve for the proposed controller.

FIGURE 8
Active Power Curve for a simple PI Controller.

FIGURE 9
Active power curve for the proposed controller.
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would result in complexity, so the shortcomings of those

methods are highlighted.

4.2 Active and reactive power

The active and reactive power curves are crucial in

determining the power quality, reliability, and system stability.

The system is tested under transient conditions to verify the

reliability of the proposed controller. Figures 8, 9 show the active

power responses for a typical PI controller and deep learning-

based optimized PI controller, respectively.

It is evident from Table 2 that the performance parameters

of deep Learning-based optimized PI controllers are much

better than a randomly tuned PI controller. The smooth and

constant supply of active and reactive power is crucial for the

loads. In the randomly tuned case, the graph shows very

unsettling behavior, which is not good for the load and the

overall system. By implementing our proposed strategy, In

Table 3 we saw that the graph is now better and more stable

than the previous version, thus ensuring a more reliable,

efficient, and stable system.

Figures 10, 11 depict the reactive power responses for an AI-

based optimized and a normal PI controller, respectively. it can be

observed that in Table 4 and Table 5 the response of the AI-based

optimized controller is smooth and contains less distortion, which

helps to maintain the power stability of the system.

Figure 12 shows the real simulated system configuration.

5 Conclusion

A deep learning optimization technique for the VSC-MTDC

was proposed and tested in this article. The proposed technique

combines the benefits of artificial intelligence with the PI controller

to achieve the best possible system response. A 200MVA systemwas

tested and the PI controllers were tuned using the deep learning

algorithm. Performances with the classical tuning methods were

compared and it was confirmed that the proposed strategy yields the

best results in terms of overshoot, undershoot etc. To test the

reliability of the proposed controllers, the system was tested

under normal and transient operating conditions. Results and

analysis of the performance parameters confirm the superior

performance of the optimized PI controller using deep Learning.

As a future trend in the development of a super grid or flexible

distribution network, deep learning or AI can be applied to various

other aspects of the power systems. This research is limited to two-

level VSC topology and cannot be readily applied to MMC or any

other converter without proper research and exploration. As a future

goal, the optimization of MMC needs further research and

exploration.
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FIGURE 12
Three terminal MTDC network.
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