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Abstract 
 

Aim: To study the length and decay behavior of a saw tooth-profile in Two-Phase-Flows of gas-particle 
mixture and compare the analytical solution with numerical solution. 
Study Design: Progressive-wave approach is used to obtain asymptotic solution of the non linear system 
of partial differential equations governing two-phase flows of gas-particle-mixture in reacting gases, 
which governs the growth and decay of acceleration front. In preparation of graphs origin 7.5 is applied. 
Place of Study: Department of Mathematics & Astronomy, Lucknow University, Lucknow-226007, 
India. 
Methodology: Analytical and numerical method (Runge-Kutta method of fourth order) is used. 
Results: The evolution equation governs the growth and decay of acceleration front and its analytical 
solution is obtained. With help of this evolution equation length and decay behavior of saw –tooth profile 
is investigated. These results are compared numerically with help of Runge-Kutta method of fourth order. 
Numerical results shows that the applied numerical method is in good agreement for length of Saw-Tooth 
profile for cylindrical case. In case of decay behavior it is in good agreement with analytical one for plane 
and cylindrical case. 
Conclusion: We conclude that the applied method is in good agreement for length of Saw-Tooth profile 
of cylindrical case and for decay behavior of Saw-Tooth profile for plane and cylindrical case.. 
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1 Introduction 
 
Studies of non-linear waves by using the progressive wave theory have been carried out by several authors. 
Germain [1] reviewed the theory of progressive wave for wide applications in several fields. By using 

asymptotic expansion method Varley and Cumberbatch [2] have studied the finite-amplitude, radically 
symmetric and isentropic waves in fluids. Seymour and Varley [3] have studied high frequency periodic 
disturbances in dissipative systems and their results were applied to non-linear transmission lines,            
non-linear dielectrics and non-linear waves in a reacting gas mixture. Through asymptotic analysis approach, 
Fusco [4] concluded that for a wave motion described by non homogeneous quasi-linear-hyperbolic system, 
coupling between non-linearity and dissipative effects can be established. Fusco and Engelbreckt [5] have   

presented asymptotic analysis of non linear waves in rate-dependent media to study the high and low 
frequency wave processes and have obtained an evolution equation for a visco-elastic media. Sharma et al. 
[6]  and Shukla et al. [7] have applied the progressive wave approach to study the decay behavior of a saw-
tooth profile in magneto fluid and chemically reacting gases respectively. 
 
Studies of non-linear effects on the wave propagation have been extensively carried out by Jeffery and 
Taniuti [8], Whitham [9], Courant and Friedrichs [10]. In recent technological advancement in different 
branches of engineering and science, compressible flows of dusty gas has attracted the attention of many   
investigators [11-19]. The study of wave propagation in a mixture of gas and dust particle has many 
engineering applications such as flow in rocket, nuclear-reactors, fuel-spray, air pollution and numerous 
application in underground applications [20,21]. 
 
It is not always possible to exactly solve non-linear differential equation, hence numerical solution plays an 
important role to deal with such problems. Numerical calculations leads to approximate results, thus there is 
a difference between the exact and computed values, known as rounding error. If this error is minimal then 
this method is suitable. References [22-25] shows some numerical solutions of non- linear waves. 
 
Having such important applications of two-phase flows of gas particle mixture, in present paper using 
asymptotic analysis, analytical and numerical solution of decay of saw-tooth profile in two-phase flow of 
reacting gas is investigated. Throughout this article we have considered the two-phase flows model 
considered by Rudinger [26], when particle volume fraction is negligible. 
 
1.1 Basic equations 
 
The basic equations governing the one dimensional motion of mixture of a reacting   gas and a large number 
of small dust particles of uniform spherical shape, when viscosity and heat conductivity of gas are neglected 
are given by Rudinger [26]. 
 

(Dρ/ Dt)+ρu,x+(ρu m)/x=0,                                                                                                                (1) 
          

(D u / Dt ) + {1/ρ(η +1)} p,x = 0,                                                        (2) 
 

(Dh / Dt ) -  (1/ρ)(Dp/ Dt) = 0,                                                                                                           (3)    
       
where p, u, ρ and h denote pressure, velocity, density and enthalpy of the mixture respectively. (D/Dt)=∂/∂t 
+u∂/∂x and a comma followed by an index denote partial derivative with respect to that index, m = 0, 1, 2 
for planer, cylindrical and spherical symmetry. Considering moderate particle loading case considered by 
Rudinger [26] η(mass flow ratio for equilibrium case) and density ρ of mixture are defined as:  
 

ρ= ρp + ρg, ρp, ρg  being density of particle material and gas respectively.  
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      η = φ / (1- φ), when gas and particle velocity are equal, φ being mass fraction of particle. 
 
We assume that the time characterizing a macroscopic change under study is long compared to the time of 
establishing Boltzmann’s distribution among translational degrees of freedom of the molecules in the 
mixture, thus rate equation is given by: 
                                   . 

(Dq / Dt) = q,                                                                                                                    (4)                                             
    
where, q is assumed to be a known function of p, ρ and q Vincenti & Kruger[27] and canonical equation of 
state is given by,  
 

   h = h(p,S,q),                                                                                                                          (5)                                                                    
 
S being entropy of medium.  
 
Using Gibbs relation,  
 

T dS = dh – (1/ρ )dp + Adq,                                                                                                              (6)  
                                            
and canonical equation of state, we have following equivalent system of governing equations:                                                                  

                                 . 
p,t  + u p, x + ρ  a2

f  {u,x + (mu)/ x} +  a2f
 [{ (A ρ ,S ) / T}  + ρ ,q] q = 0,                                            (7)             

                                     
u,t+ uu,x+  p,x{1/ρ(η+1)} = 0,                                                                                                            (8)                                                           
                         . 
S,t + u S,x – (Aq ) / T =0,                                                                                                                   (9)                                               
               . 
q,t + u q,x –q= 0,                                                                                                                  (10)   

                                                                             
where T is temperature, A is the affinity of the internal transformation characterized by variable q and,          
a2

f
 = {- h, ρ/ρ(η+1) (h,p – 1/ ρ )} being square of resulting sound speed. Equations (7-10) in dimensionless 

form can be written as  
 

Ui
,t+Cij Ui

,x+Di =O                                                                                                                            (11)                                                               
  
Ui being Column vector with four components p, u, S, q, Cij is 4X4 matrix, Di is a column vector with four 
components which can be obtained from equations (7-10) by inspection. System (11) is hyperbolic in nature 
and matrix Cij of equation (11) has four real eigenvalues (u ± af) and u twice. Left and right eigenvectors 
corresponding to eigenvalues (u +af ) are given by, 
   

 L1 = [1 , ρaf  , 0 , 0 ], 
 R1= [1 , 1/(ρaf) , 0  ,0 ] T,  
 

where superscript T denotes transposition. 
 

2 Methodology  
 

a –  Progressive wave solution: To find an asymptotic solution of system (11), let us consider 
asymptotic expansion for Ui  in the following form: 

 
Ui (x, t) = Ui 0 + Є Ui 1  (x ,t, ξ) + Є2  Ui 2  (x, t , ξ) + O( Є n),                                                       (12)              
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where, Ui 0, is a known constant state  solution of equation (11) such that, 
 

Di (U0) = 0 and 
 
Є = τ c h / τ α <<1 is a small parameter, τ c h- characterizes time scale for medium and τ α is attenuation time 
characterizing dissipative mechanism. 
 
Introducing Taylor’s expansion of Cij  and Di  in neighborhood of the known constant solution Ui

0 and using 
asymptotic expansion given by equation (12)  in equation (11) and collecting coefficients of constant term 
and Є, we have following set of equations:  
 

(Cij 
0 – λ δ i j) U j 1,ξ  =0                                                                                                                     (13)   

                                                                      
(Cij 

0 –λ δ
 i j) U

j
2,ξ + f -1,x{(U

i
1,t  +   Cij 

0( U j i ,x)} +  Uk
1(C

ij
, U k) 0 (U j 1,ξ)+   f, x

 -1Uk
1(D

i
, U k) 0   = 0,  (14)                        

                                   
where, ξ=f(x ,t) /Є is fast variable, f(x,t) being Phase Function characterizing wave front,                               
λ = -f,t / f,x and δi

j  being kronecker delta.  
 

Equation (13) shows that Ui
1,ξ is collinear to a right eigenvector R i 0.  Thus, Ui

1 can be written as  
 

  U
i
1(x , ξ ,t) = g(x, t, ξ) R i 0  + S i  (x, t),                                                   (15)        

 
g(x, t ,ξ) being wave amplitude which we have to determine and S i  are constants of integration, which are 
not of a progressive wave nature and can be taken as zero. 
 
The phase equation and evolution function g are given by:  
 
 

f (x,t) = x - x0  - af 0 t                                                                                                                          (16)  
                                                                      
and, 
  

∂g/∂τ + E 
0 g∂g/∂ξ+Q0 g = 0,                                                                                                             (17)  

                                                                    
 where,  
                                                                                                         

E0 = [(Γ  + 1) / 2ρ a f ]0,  
 

Q0 = (1/ 2τ0)[{ (a
2 f 0 / a

2 e0 ) – 1 } +{( m a f0 )/ 2 (x0  + a f 0 t )} ], 
 

af  is frozen speed of sound, ∂ / ∂τ = ∂/ ∂ t + a f 0  ∂/ ∂ x is Ray derivative, Γ = 1+ ρ (∂ a2 f  / ∂p) = γ M ( 1 + ζ η) 
/ ( 1 + γ M  ζ η), ratio of specific heats of mixture,  γ M=Ω ( 1 + ζ η ) / ( 1 + Ω ζ η) , Ω = (4+q) /3, for ideal 
case Ω= γ, η being mass loading ratio, ζ is relative specific heat ( c/ cp), c being specific heat of particle 
material, cp is  specific heat of gas at constant pressure and subscript zero implies that quantity is evaluated at 
equilibrium which means:    
 

Γ 0 = Γ (p0,S0,q0). 
 

b –  Acceleration wave front: In order to consider an acceleration wave front described by the curve 
f(x ,t) =0, u may be represented by,  

 

u = Є u 1 (x, t, ξ)+O(Є2) where, 
  

u 1  = 0, for ξ < 0 
 

and      
 

u 1  = O(ξ) for ξ > 0. 
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Thus in view of equation (15), g(x, t, ξ) is given by,   
 
               g(x, t, ξ ) = 0 for ξ < 0                           
 
               g(x,t,ξ) = ξ f ( x, t )+ O(Є2) for ξ > 0,                                                         (18)    

                                                                                                       
 
where, f (x, t) = (σ/af0 ) and σ = [u, x ] denotes the jump in the velocity gradient across the acceleration front 
and may be described as the  wave amplitude of acceleration front. 
 
Substituting g (x, ξ ,t) from equation (18) into equation (17), we have following type of Bernoulli equation: 
 

dσ/ dt +σ [B+{(m  af /2(x + af t)}]  0 + Λ0 σ
2  =0,                                                                                  (19)     

                                                                                                                           
where, Λ0  = (Γ + 1 ) / 2 and   
 
            B0 = (1/ 2τ0) { (a

2 f 0 / a
2 e0 ) – 1 }.  

 
Equation (19) governs growth and decay of acceleration front and its solutions are: 
 

σ = [ σ * exp (–B0 t )  ] / [ 1 +{ (Λ0 σ *) /  B 0 }{1 –exp (– B0 t) }]         for  m = 0                         (20)                                                          
 

σ =[σ * exp (–B0 t )(x0 + af0 t) 
(-1/2) ] / [(x0) 

(-1/2)  + (Λ0 σ * )  
 

{ π / (B 0 af0 )}
1/2 exp( B0x0 / af0 )   {erf(B0x/af0 )

1/2–erf( B0 x0/ af0 )
1/2 }]  for     m = 1                      (21)                                                                                                                         

 
σ  =[ σ * exp (–B 0 t)(x0 + af0 t) 

(-1) ] / [(x0) 
(-1)  +{(Λ0 σ * ) /af0}  

 

exp( B 0 x0 / af0 ) {Ei( B0 x0 / af0 )
1/2  – Ei( B 0 x / af0 )

1/2}]                         for     m = 2                    (22)                                                                                                                  
 
where,   
                                             x 

erf (x) = (2/ π1/2 )   ∫ exp(-t2 )dt, and 
                                            0 
                          x 
               Ei (x) =∫{ ( 1- e(-t)) / t}dt  - ln x – r,      
                         0   
 
are error and exponential functions respectively. In deriving these results help of reference [28] is taken.      
σ * ≠0 is the initial value of σ. As B0 and Λ0 are positive constant solution of equations (20) to (21) shows 
that all expansion waves (σ * >0) decreases exponentially and will be damped out ultimately. On the other 
hand compressive waves (σ *<0) will decay out and terminate into a shock-wave and if in case                      
σ * =B 0 /Λ0 , velocity at wave- front will remain constant results similar to [29,30].   
         

c- Decay of saw-tooth profile: Now we consider a physical situation when a compressive wave 
terminates into a weak shock front propagating into the medium at rest, followed by an expansion 
wave front. Such physical situation may be described in the form of a saw – tooth profile. As time 
passes, the compressive part of the initial wave steepness into a weak -shock due to non-linear 
effect, but the expansion part propagates in the form of an expansion wave following the shock with 
a speed of propagation af 0. The associated shock part propagates at a faster speed G > af 0 and 
location of the shock at any time t is given by.  

   
x s(t) = x0 + af 0 t + L(t),                                                                                                                  (23)                                                              

 
L(t) being the length of the saw – tooth profile at any time t. 
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The velocity G in this case is given by, 
  

  G = d x s(t) /d t = a f 0 + dL/dt.                                                                                                         (24)            
                                                                                                 
From weak- shock conditions we have, 
  

G = af 0 + u1 ( Γ  + 1 ) / 4,                                                                                                                 (25)                                                  
 
where u1 = af 0 δ, δ= [ρ ] /ρ 0 denotes shock-strength parameter.  
 
The particle velocity u at the rear of the weak-shock heading the saw-tooth profile can be expressed as,   
           

   u 1  = σ  L(t).                                                                                                                                     (26)                                                     
 
From equations (23) to (25) we have,  
 
              (dL / dt ) = {σ L(t) Λ0 }/2.                                                                                                                (27)                                                           
  
Integrating equation (27) we have, 
   

L / L *  = [ 1 +{ (Λ0 σ * ) / B0 } { 1 – exp (– B0 t ) }] 
1/2    for   m = 0,                                           (28)                                                                                                                             

                                            
L / L * = [1  + (Λ0 σ *(x0) 

(1/2))     
 

{ π / (B0 af0 )}
1/2 exp( B0 x0 / af0 ) {erf( B0 x / af0 )

1/2 – erf( B0 x0 / af0 )
1/2 }] (1/2)   for     m = 1           (29)                                                                                                                           

 
L / L *= [1  +{(Λ0 σ * x0 ) /af0} exp( B0 x0/af0 ) {Ei (B0 x0 / af0 )

1/2 –Ei( B0 x / af0)
1/2}] 1/2  

 

for m = 2,                                                                                                                                         (30)                                            
 
Applying equations (20 – 22) and (28 – 30) in equation (26) we have,   
 

u = [L*σ* exp (–B0 t)] /[1+{(Λ0 σ *)/B0}{1–exp(–B0t)}]
1/2 for   m = 0,                                          (31)                                                                                                                                 

 
u  = [ σ * L * exp (–B0 t ){ x0  (x0 + af0 t) 

(-1/2)}] / [1   + {Λ0 σ * (x0) 
(1/2)}  

  

{ π / (B0 af0 )}
1/2 exp( B0 x0 / af0 )    {erf(B0x/af0 )

1/2–erf(B0x0/af0)
1/2}] 1/2   for     m = 1,                   (32)                                                                                            

   
u  =  [ σ * L *  exp (–B0 t ){ x0  (x0 + af0 t)

-1} ] / [1   +{(Λ0 σ *x0  ) /af0}  
 

exp( B0 x0 / af0){Ei ( B0 x0 / af0 )
1/2 –Ei ( B0 x /af0)

1/2}] 1/2  for     m = 2,                                           (33)                                                                                                                     
 

3 Results and Discussion 
 
Progressive-wave approach is used to obtain asymptotic solution of the non-linear system of partial-
differential equations governing two-phase flows of gas-particle- mixture in case of reacting gases. For wave 
amplitude a Burger type equation is obtained from which Bernoulli type evolution equation is derived. This 
evolution equation governs the growth and decay of acceleration front and its analytical solution is obtained. 
Next for saw-tooth profile length and decay behavior is investigated. These results are compared numerically 
with help of Runge-Kutta method of fourth order. Numerical results shows that the applied numerical 
method is in good agreement for length of Saw-Tooth profile for cylindrical case. In case of decay behavior 
it is in good agreement with analytical one for plane and cylindrical case. In preparation of graphs origin 7.5 
is applied. 
 
Figs. 1-3, shows the non-equilibrium effects on the length of saw-tooth profile for planer, cylindrical and 
spherical waves. Figs. 4-6 shows decay behaviour   of saw-tooth profile under non-equilibrium effects.  
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Fig. 1. Non-equilibrium effect on the length of a saw-tooth profile for plane wave 
 

 
 

Fig. 2. Non-equilibrium effects on the length of a saw-tooth profile for cylindrical wave 
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Fig. 3. Non-equilibrium effects on the length of a saw-tooth profile for spherical wave  
 

 
 

Fig. 4. Decay of saw-tooth profile for plane wave under non-equilibrium effect 
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Fig. 5. Decay of saw-tooth profile for cylindrical wave for non equilibrium effect 
 

 
 

Fig. 6. Decay of saw-tooth profile of spherical wave under effect of non-equilibrium effect 



 
 
 

Pandey; BJMCS, 17(3): 1-11, 2016; Article no.BJMCS.24006 
 
 
 

10 
 

4 Conclusion 
 
Figs. 1-3, shows the non-equilibrium effects on the length of saw-tooth profile for planer, cylindrical and 
spherical waves and is concluded that for cylindrical waves numerical results are in good agreement with 
analytical result. Figs. 4-6 shows decay behaviour of saw-tooth profile under non-equilibrium effects and 
results show that for planer and cylindrical case numerical method has a good agreement with analytical one. 
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