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Abstract

Aim: To study the length ai decay behavior of a saw to-profile in Twc-Phas-Flows of ga-particle
mixture and compare the analytical solution with numesoéltion.

Study Design:Progressive-wave approach is used to obtain asymptotic sobdittba non linear system
of partial differential equations governing two-phase flavfsgas-particle-mixture in reacting gases,
which governs the growth and decay of acceleration fromgrdparation of graphs origin 7.5 is applied.
Place of Study: Department of Mathematics & Astronomy, Lucknow Universitycknow-226007,
India.

Methodology: Analytical and numericahethod(Runge-Kutta method of fourth order) is used.
Results: The evolution equation governs the growth and decay of exati®in front and its analytical
solution is obtained. With help of this evolution equatiemgth and decay behavior of saw —tooth prafile
is investigated. These results are compared numericalyhelp of Runge-Kutta method of fourth order.
Numerical results shows that the applied numerical mathimdgood agreement for length of Saw-Tooth
profile for cylindrical case. In case of decay behavi@ ih good agreement with analytical one for plane
and cylindrical case.
Conclusion: We conclude that the applied method is in good agreefoetgngth of Saw-Tooth profile
of cylindrical case and for decay behavior of Saw-Tootffilerfor plane and cylindrical case.
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1 Introduction

Studies of non-linear waves by using the progressive Waary have been carried out by several authors.
Germain [1] reviewed the theory of progressive wawe \fide applications in several fields. By using

asymptotic expansion method Varley and Cumberbatcind2¢ studied the finite-amplitude, radically
symmetric and isentropic waves in fluids. Seymour andeya8] havestudied high frequency periodic
disturbances in dissipative systems and their results wpptied to non-linear transmission lines,
non-linear dielectrics and non-linear waves in a reactisgrgature. Through asymptotic analysis approach,
Fusco [4]concluded that for a wave motion described by non homogeneousigaasihyperbolic system,
coupling between non-linearity and dissipative effects loa established. Fusco and Engelbreckt [5] have
presented asymptotic analysis of non linear waves indegiendent media to study the high and low
frequency wave processes and have obtained an evolution edaatéorisco-elastic media. Sharma et al.
[6] and Shukla et al. [7] have applied the progressive wave agpptosstudy the decay behavior of a saw-
tooth profile in magneto fluid and chemically reacting gasspectively.

Studies of non-linear effects on the wave propagation have bgensively carried out by Jeffery and

Taniuti [8], Whitham [9], Courant and Friedrichs [10]. lecent technological advancement in different
branches of engineering and science, compressible flows of dasthas attracted the attention of many
investigators [11-19]. The study of wave propagation in aurexibf gas and dust particle has many
engineering applications such as flow in rocket, nucleataesacfuel-spray, air pollution and numerous
application in underground applications [20,21].

It is not always possible to exactly solve non-lineafedéintial equation, hence numerical solution plays an
important role to deal with such problems. Numerical datmns leads to approximate results, thus there is
a difference between the exact and computed values, knowouading error. If this error is minimal then
this method is suitable. References [22-25] shows somenizahsolutions of non- linear waves.

Having such important applications of two-phase flows of ggsicle mixture, in present paper using
asymptotic analysis, analytical and numerical solutiodlesfay of saw-tooth profile in two-phase flow of
reacting gas is investigated. Throughout this article haee considered the two-phase flows model
considered by Rudinger [26], when particle volume fradsamegligible.

1.1 Basic equations

The basic equations governing the one dimensional motiorixdire of a reacting gas and a large number
of small dust particles of uniform spherical shape, wherosiscand heat conductivity of gas are neglected
are given by Rudinger [26].

(Dp/ Dt)+pu,+(pu m)/x=0, (1)
(Du/Dt) +{lp(n +1)} px =0, (2
(Dh/Dt) - (1p)(Dp/ Dt) =0, ©)

where p, up and h denote pressure, velocity, density and enthalfheahixture respectively. (D/Dtptot
+uo/ox and a comma followed by an index denote partial derivatitle respect to that index, m =0, 1, 2
for planer, cylindrical and spherical symmetry. Consitgnnoderate particle loading case considered by
Rudinger [26(mass flow ratio for equilibrium case) and densigf mixture are defined as:

p=pp * Pgs Pps Pg EING density of particle material and gas respectively
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n =0/ (1-¢), when gas and particle velocity are eqgdbeing mass fraction of particle.
We assume that the time characterizing a macroscopitgehunder study is long compared to the time of

establishing Boltzmans distribution among translational degrees of freedom of theeaulels in the
mixture, thus rate equation is given by:

(Dq/DH=gq, @)

where, g is assumed to be a known function gf @nd g Vincenti & Kruger[27] and canonical equation of
state is given by,

h = h(p,S,q), ®)
S being entropy of medium.
Using Gibbs relation,

T dS =dh - (¥ )dp + Adq, (6)

and canonical equation of statee have following equivalent system of governing equations:

Pe +UPx*+p & {Ux* (MU X3+ &{(A pos)/ T} +p q=0, I
Ut Ut pu{1/p(n+1)} =0, (8)

Si+US,—(Aq)/T =0, 9)
Qi+ U Oy —d: 0, (10)

where T is temperature, A is the affinity of the intertransformation characterized by variable g and,
t={- h, Jp(n+1) (hy, — 1/p )} being square of resulting sound speed. Equations (7-10)viardionless
form can be written as

U +C' U ,+D'=0 (12)
U' being Column vector with four components p, u, S, 'gis@X4 matrix, Dis a column vector with four
components which can be obtained from equations (7-10) by ir@pe8ystem (11) is hyperbolic in nature
and matrix ¢ of equation (11) has four real eigenvalues (4)#aad u twice. Left and right eigenvectors
corresponding to eigenvalues (4 Yare given by,

L'=[1,pa,0,0],
R'=[1, 1/pa),0 07,

where superscript T denotes transposition.

2 Methodology

a— Progressive wave solutionTo find an asymptotic solution of system (11), let us consider
asymptotic expansion for'Un the following form:

U t=Uo+€eU | (x,1,E)+€> U, (x, 1,8 +0(€EN, (12)
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where, LiJO, is a known constant state solution of equation (11) that,
D'(Ug) = 0 and

€ =1.n/ 1, <<lis a small parameter. - characterizes time scale for medium ands attenuation time
characterizing dissipative mechanism.

Introducing Taylor's expansion of!@nd D in neighborhood of the known constant solutidpadd using
asymptotic expansion given by equation (12) in equation (11) atettioy coefficients of constant term
and€, we have following set of equations:

(C'o—28") Ul =0 (13)
(C oA ) Upe + 14U+ Co(Ul 01+ UNC 4 o(U) 1)+ f,x"U(D' udo =0, (14)

where, &=f(x ,t) /€ is fast variable, f(x,t) being Phase Function charattgyi wave front,
L = -f,/ fxandd) being kronecker delta.

Equation (13) shows thatJis collinear to a right eigenvector' g Thus, U, can be written as
Uil(x ’ i !t) = g(X, t!i) Ri ot Si (X, t)! (15)

g(x, t £) being wave amplitude which we have to determine ahdr8 constants of integration, which are
not of a progressive wave nature and can be taken as zero.

The phase equation and evolution function g are given by:

f(X,) =X-X% - a&ot (16)
and,
oglot + Eo gogloe+Qug = 0, (17)

where,

Eo=[(I'+1)/ 2 as]o,
Qo= (U 2l{ (@%10/& &) =1} H(mMaw) 2 (% +asot)} ],

& is frozen speed of sound/ 6t =/ 0t + a;o 6/ @ x is Ray derivativel’ = 1+p (0 & /0p) =y (1 +(n)
/(1 +yy Cn), ratio of specific heats of mixturey y=Q (1 +{n )/ (1+Q{n),Q = (4+q) /3, for ideal
caseQ= v, n being mass loading ratig, is relative specific heat ( cf)¢ ¢ being specific heat of particle
material, gis specific heat of gas at constant pressure and subzeripimplies that quantity is evaluated at
equilibrium which means:

r 0= r (n)la)lq))

b — Acceleration wave front:In order to consider an acceleration wave front destrityethe curve
f(x ,t) =0, u may be represented by,

u=€uq(x t &+OE? where,
u; =0,forE<0

and
u; =0E) for&>0.
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Thus in view of equation (15), g(x,8) is given by,
g(x, t§)=0forE <0
g(x.£) =& f(x, t)+ O€? fore >0, (18)
where, f (X, t) = §/apn) ando = [u, « ] denotes the jump in the velocity gradient across thdexation front
and may be described as the wave amplitude of accelefatign
Substituting dx, & ,t) from equation (18) into equation (17), we have followingtgpBernoulli equation:
do/ dt +o [B+{(m &/2(x + at)}] o+ Agc® =0, (19)
where, Ap=("'+1)/2and
B= (1 20) { (@ 0/ &) -1}
Equation (19) governs growth and decay of acceleration &mhits solutions are:
o=[o*exp (-Bt) 1/[1+{(Agc*)/ BoHl —exp (- Byt) }] for m=0 (20)

o =[c * exp (Bt )(Xo + a0 t) P11 [(xo) 2 + (Ago *)
{n/(Boao)}"?exp( Bxo/ ao) {erf(Box/ap)"erf( Byxo/ &)} for m=1 (21)

o =[c*exp (-Bot)(Xo + d0t) 1/ [(x0) ™ +{(Aoc *) fa}
exp( BoXo/ &) {Ei( BoXo/ @ )" — Ei( Box / a)"3] for m=2 (22)

where,

X
erf (x) = (2/n'?) [exp(-£)dt, and
0
X
Ei (x) {(1-€)/tdt -Inx—r,
0

are error and exponential functions respectively. In deritlege results help of reference [28] is taken.
o * #0 is the initial value o6. As ByandAgare positive constant solution of equations (20) to (21) show
that all expansion waves ¢ >0) decreases exponentially and will be damped out ultlpna®n the other
hand compressive waves (*<0) will decay out and terminate into a shock-wave andnifcase

o * =B ¢/Ay, velocity at wave- front will remain constant résuimilar to [29,30].

c- Decay of saw-tooth profile:Now we consider a physical situation when a compressives wav
terminates into a weak shock front propagating intontleelium at rest, followed by an expansion
wave front. Suclphysical situation may be described in the form of a saeoth profile. As time
passes, the compressive part of the initial wave steepniess iweak -shock due to non-linear
effect, but the expansion part propagates in the form ekpansion wave following the shock with
a speed of propagation ;@ The associated shock part propagates at a faster speed {&and
location of the shock at any time t is given by.

X{t) =%+ got+ L(t), (23)

L(t) being the length of the saw — tooth profile at anyetim
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The velocity G in this case is given by,

G =d xqt) /d t = a; o+ dL/dt. (24)
From weak- shock conditions we have,

G=ao+w(l +1)/4, (25)
where U= &9, 6= [p ] /p o denotes shock-strength parameter.
The particle velocity u at the rear of the weak-shock hegtti@ saw-tooth profile can be expressed as,

u; =c L(t). (26)
From equations (23) to (25) we have,

(dL/dt) =4 L(t) Ao}2. (27)
Integrating equation (27) we have,

L/L* =[1+{(Aoc*)/Bo}{1l—exp(-Bt)}] ¥ for m=0, (28)

L/L*=[1+ (Ago *(xq) M)

{ ! (Boan)}?exp( ByXo/ @) {erf( Box / a0 ) — erf( Byxo/ @o)?}] “? for m=1 (29)
L/L*=[1+{(AoG * Xo) /an} exp( BoXo/ao) {Ei (BoXo/ a@0)"* —Ei( Byx / ao)"3] 2
form =2, (30)

Applying equations (20 — 22) and (28 — 30) in equation (26) we have,
u = [L*o* exp (—Bt)] /[1+{( Ao *)/BoH{1-exp(-Bgt)}] ¥for m =0, (31)

U =[o*L*exp (-Bot){Xo (X0 +a0t) N /[1 +{Agc * (xo)) “%}
{m/(Boao)} " exp(ByXo/ a0) {erf(Box/an ) *~erf(Boxoao) 3] ** for m=1, (32)

u=[o*L* exp (-Bot){Xo (Xo+aot)"}1/[1 +(Aoc *Xo ) fao}
exp( ByXo / ao){Ei ( BoXo/ @ )2 —Ei (BoX lag)*3] ¥2 for m=2, (33)

3 Results and Discussion

Progressive-wave approach is used to obtain asymptotidcion of the non-linear system of partial-
differential equations governing two-phase flows of-gadicle- mixture in case of reacting gases. For wave
amplitude a Burger type equation is obtained from which Belirtgpe evolution equation is derived. This
evolution equation governs the growth and decay of accelerfatiot and its analytical solution is obtained.
Next for saw-tooth profile length and decay behavior igstigated. These results are compared numerically
with help of Runge-Kutta method of fourth order. Numericgdutts shows that the applied numerical
method is in good agreement for length of Saw-Tooth prédileylindrical case. In case of decay behavior
it is in good agreement with analytical one for plane @nishdrical case. In preparation of graphs origin 7.5
is applied.

Figs. 1-3, shows the non-equilibrium effects on the lengtkaef-tooth profile for planer, cylindrical and
spherical waves. Figs. 4-6 shows decay behaviour of@ativ-profile under non-equilibrium effects.
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Fig. 1. Non-equilibrium effect on the length of a saw-todt profile for plane wave
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Fig. 2. Non-equilibrium effects on the length of a saw-tdb profile for cylindrical wave
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Fig. 3. Non-equilibrium effects on the length of a saweoth profile for spherical wave
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Fig. 4. Decay of saw-tooth profile for plane wave under neaquilibrium effect
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Fig. 5. Decay of saw-tooth profile for cylindrical wave fomon equilibrium effect
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4 Conclusion

Figs. 1-3, shows the non-equilibrium effects on the lengtbawef-tooth profile for planer, cylindrical and
spherical waves and is concluded that for cylindrical waneserical results are in good agreement with
analytical result. Figs. 4-6 shows decay behaviour of teathr profile under non-equilibrium effects and
results show that for planer and cylindrical case nigaemethod has a good agreement with analytical one.
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