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Abstract
In this paper, an analytical model of a micro-electromechanical (MEM) resonator used as a 4-bit
digital-to-analog converter (DAC) is presented. First, we derive the dynamic equation of the
4-bit DAC device, and the nonlinear governing equation is solved by the Galerkin method
combined with a shooting technique to simulate the static response, linear eigenvalue problem,
and forced vibration response of the device for various electrostatic actuation cases. Also, we
optimize the air gaps in the linear domain to ensure enhanced performance of the DAC. Further,
to analyze the operation of the DAC in the nonlinear regime, two experimental samples powered
by −2 dBm and −12 dBm AC inputs are examined. Forward and backward frequency sweeps
are conducted experimentally and analytically. The proposed analytical results are validated by
comparison with experimental data. The results indicate that the presented modeling,
simulations, and optimization are effective tools for the design of MEM resonator-based circuits.

Keywords: digital to analog converter (DAC), MEMS resonator, optimization, nonlinear
dynamics

(Some figures may appear in colour only in the online journal)

1. Introduction

Micro-beams are themost commonly used structures inmicro-
electromechanical systems (MEMS) resonators [1, 2]. In par-
ticular, clamped-clamped beams, a key resonator component,
have been extensively explored for many practical applica-
tions such as in band-pass filters [3–5], oscillators, digital logic
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gates [6–11], and memory devices [12, 13]. The static and
dynamic behaviors of resonant beams are complicated, espe-
cially under the nonlinear electrostatic-force actuation. Thus,
it is necessary to understand the behavior of resonant beams
in such cases.

Considerable effort has been made to understand the com-
plex static and dynamic behaviors of MEMS structures, espe-
cially beams. A review of recent advances in this field is
presented in [14]. Mestrom et al [15] studied the softening and
hardening behaviors of a clamped-clamped beam resonator
through a combined analytical-numerical and experimental
approach. The obtained results show softening or harden-
ing nonlinear dynamics depending on excitations. Mestrom
et al [16] also utilized the clamped-clamped beam resonator
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to predict the measured resonator response and the nonlinear
dynamic steady-state behaviors under different parameters. A
good quantitative match was achieved between simulation and
experimental results. Venstra et al [17] studied the clamped-
clamped mechanical resonators in water through a magneto-
motive drive. The results demonstrate that the magnetomotive
technique can be used to drive and detectmicromechanical res-
onator vibrations. Azizi et al [18] investigated the nonlinear
chaotic dynamics of an electrostatically and piezo-electrically
actuated clamped-clamped micro beam. The results indicate
that an appropriate DC source to piezoelectric layer can pass-
ively control the chaotic response of the micro system. Hu
et al [19] investigated the snap-through, pull-in behaviors and
dynamics of an initially curved micro clamped-clamped beam
under an electro-dynamical actuation. Kumar et al [20] stud-
ied the nonlinear dynamics and the internal resonances of
a clamped-clamped beam MEMS resonator by using Galer-
kin based reduced-order model and a finite element method.
Their results can serve as guidelines for developing control-
lers that regulate the displacement of driven mode by its inter-
action with the coupled mode. Ghayesh et al [21] analytically
presented an investigation on an electrically actuated MEMS
clamped-clamped resonator and studied the pull-in instability,
force-response, and dynamic behavior of the system through
the time histories and phase-plane portraits. Li et al [22] stud-
ied the nonlinear modal interactions of electrically actuated
clamped-clamped micro beams and the effects of antisymmet-
ric modes on the nonlinear dynamics. The results show that the
nonlinear modal interactions can transfer the energy from one
mode to a nearby mode.

As mentioned above, the Galerkin method has been widely
used to investigate the dynamics of MEMS structures. How-
ever, under low damping conditions and for complex electro-
static actuation, the Galerkin method suffers since it can only
catch part of the dynamic state (solution). Furthermore, simu-
lations using this method are time-consuming and do not con-
verge easily. To alleviate this, a combined Galerkin-shooting
technique can be used [1]. Most resonance curves, especially
near the bifurcation point [1, 23], can be captured by this
powerful method. Nayfeh et al [24] and Younis et al [25]
adopted a shooting method along with the Galerkin method to
study the nonlinear dynamics of a novelMEMS switch excited
around the primary resonance and undergoing large motion.
Yu et al [26] adopted the combined Galerkin-shooting tech-
nique to analyze the electromechanical post-buckling response
of a clamped-clamped beam actuator subjected to axial resid-
ual stresses and a symmetric electrostatic field. Using same
technique, Emam et al [27] experimentally and analytically
investigated the nonlinear behaviors of a clamped-clamped
buckled beam near subharmonic resonance and investigate
the stability and bifurcations based on a combined method
of Galerkin-shooting. Nayfeh and Younis [28] utilized the
combination of the shooting technique and a reduced-order
model to analyze and simulate the dynamics of an electrically
actuated micro-beam, near primary, sub-harmonic, and super-
harmonic resonances.

Digital-to-analog converters (DACs) are basic elements for
electronics and microcontrollers in MEMS. Recent, efforts

have been made to realize DACs using MEMS technology
motivated by the need to reduce power consumption, which
has a more promising digital signal processing application
in MEMS devices [29]. Yeh et al [30] demonstrated a tech-
nique to create a 3-bit mechanical DAC by using lever
arms and thermal actuator arrays. It can take digital elec-
trical signals and produce mechanical displacements at the
output which can be used in applications such as micro-
optics, mechanical-computing, and micro-robotics. Toshiy-
oshi et al [31] discussed the design and implementation of
a 4 bit micromachined electrostatic actuator-based MEMS
DAC in which a set of local digital displacements are con-
verted into an analog output displacement. Pandiyan et al
[32] used a bending beam electro thermal compliant actu-
ator to design and simulate an MEMS-based DAC. The pro-
posed DAC generates a mechanical displacement at the out-
put from the digital input based on the principle of weighted
stiffness which is analogous to binary-weighted resistor
DAC.

The investigated DACs above based on different micro-
structures are complicated consisting of arrays of many asym-
metric and symmetric structures with multi-bent beam actu-
ators. As a result, these kinds of reported DACs structures
occupy large areas. Also, some of the reported DACs need
DC currents for their operation, which results in high energy
consumption. The proposed DAC here consists of a single
straight micro clamped-clamed beam with multi-partial elec-
trodes, which is simple and easy to fabricate. Also, this DAC
does not need a DC current, hence it consumes less power.
The proposed DAC can be used to internet of things (IoT)
applications that demand moderate speed and lower power
consumption.

In this paper, we analytically and experimentally invest-
igate the statics and dynamics of the MEMS resonator-based
4-bit DAC [33, 34] in depth. The device consists of a clamped-
clamped beam, separated from various partial electrodes of
different air-gap sizes. The digital inputs are DC voltages,
applied to four partial electrodes, which tune the beam’s res-
onance frequency using the electrostatic softening effect. Our
objective is to develop a theoretical model, predict all the rel-
evant aspects of the experimental response, and optimize the
device performance. First, we derive the dynamic equations of
the device, and then we investigate the static deflection, eigen-
value problem (EVP), optimization, and dynamic response of
the micro-resonator based on the Galerkin-shooting proced-
ure. Lastly, we examine twomeasurement samples of the DAC
under the nonlinear operation. The forward and backward fre-
quency sweep on each digital case is conducted, and excellent
agreements are found between the experimental and theoret-
ical results.

The outline of the rest of the paper is as follows. Section 2
describes the modeling procedure. The static response, EVP,
and optimization are presented in sections 3 and 4, respect-
ively. Section 5 experimentally and analytically illustrates the
frequency response for the forward and backward frequency
sweeps and examines the effects of the biasing voltage of the
beam on the DAC. Finally, conclusions remarks are summar-
ized in the last section.
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2. Problem formulation

A picture of the proposed resonator DAC is shown in
figure 1(a). The device is fabricated by MEMSCAP Inc
foundry through SOIMUMPs process [35] using a surface
micromachining process on a silicon on an insulator wafer.
The process starts by defining electrodes with gold by lift-
ing off a Cr/Au bi-layer (20 nm/500 nm), and then the silicon
device layer (25 µm thick) is patterned by deep reactive ion
etching to define the beam, the anchors, and corner electrodes.
Finally, the structure is released by etching the SiO2 in using
vapor Hydrogen Fluoride (HF) . The used wafer has the fol-
lowing layer thicknesses: (a) silicon thickness: 25 ± 1 µm;
(b) oxide thickness: 1± 0.05 µm; (c) handle wafer (substrate)
thickness: 400 ± 5 µm.

The DAC device consists of an in-plane-clamped-clamped
micro beam based resonator (length l= 500 µm, lateral width
W = 2.66 µm, thickness h = 25 µm) with a DC voltage
(VBeam), and side partial electrodes with various air-gap widths
as shown in figure 1(b). The digital inputs of the DAC are DC
voltages, applied to four corner electrodes marked as D3, D2,
D1, and D0 in figure 1(a). The actuation of the micro beam res-
onator is realized through the different digital input combina-
tions (DC source) and AC voltage components. The resonator
here is driven to vibrate on the first vibration mode.

The input vector D3 D2 D1 D0 is a binary number where
D3 (with the smallest gap) is the most significant bit and D0

(with the largest gap) is the least significant bit. Each bit can
be either ‘1’ (on) or ‘0’ (off), which are defined as ‘40’ V or
‘0’ V, respectively. Thus, there are 16 combinations (24 = 16)
for the inputs ranging from ‘0000’ to ‘1111’ representing the
decimal numbers from 0 to 15. The resonance frequency of
the beam should increase as the decimal equivalent value of
the applied digital input increases.

The equations of motion governing the transverse deflec-
tion ŵ of a clamped-clamped beam under the partial electrode
actuation can be described as

EI ŵ ′ ′ ′ ′ + ρA ¨̂w+ ĉ ˙̂w

=

[
N̂+

EA
2l

ˆ l

0
(ŵ(x̂, t̂) ′)

2
dx̂

]
ŵ ′ ′

+

[
1
2
εb

(VD1 −VBeam)
2

(d1 − ŵ)2
− 1

2
εb

(VD0 −VBeam)
2

(d0 + ŵ)2

]
[U(â5 − x̂)−U(â4 − x̂)]

+

[
1
2
εb

(VBeam −VAC cos(Ω̂t))
2

(d− ŵ)2
− 1

2
εb

VBeam
2

(d+ ŵ)2

]
[U(â3 − x̂)−U(â2 − x̂)]

+

[
1
2
εb

(VD3 −VBeam )
2

(d3 − ŵ)2
− 1

2
εb

(VD2 −VBeam)
2

(d2 + ŵ)2

]
[U(â1 − x̂)−U(â0 − x̂)]] (1)

with the following boundary conditions:

ŵ(0, t̂) = ŵ(l, t̂) = 0 and ŵ ′(0, t̂) = ŵ ′(l, t̂) = 0 (2)

where the prime indicates the derivative in space ŵ ′(x̂, t̂) = ∂ŵ
∂x̂

and the dot indicates the derivative in time ˙̂w(x̂, t̂) = ∂ŵ
∂ t̂ .

Here, x is the position along the beam length, E and I are
the elastic modulus and the moment of inertia, b is the width
of the beam, h is the beam thickness, ĉ is the viscous damping
coefficient, N̂ is the axial load, A is the cross-section area of
the beam, l is the length of the beam, d is the gap between the
beam and drive or sense electrode. The air gaps between the
corner electrodes and beam are d0, d1, d2, and d3, respectively.
Also,U(x) is a step function. The distance of each partial elec-
trode position to the left starting point (o) of the resonator in
figure 1(a) is âi (i = 0, 1, 2, 3, 4, 5) respectively. The detailed
values are illustrated in table 1.

Equation (1) is governed by 16 key parameters (d1, d2, d3,
d4, d, and â0, â1, â2, â3, â4, â5, VD0, VD1, VD2, VD3, VBeam). To
facilitate analysis of the equation, the following dimensionless
variables are introduced

w=
ŵ
d3

; x=
x̂
l
; t= t̂

√
ρbhl4

EI
; ai =

âi
l
. (3)

We substitute equation (3) into equations (1) and (2), yielding
the non-dimensional equation

w ′ ′ ′ ′ + ẅ+ c ẇ

=

[
Nnon +α1

ˆ 1

0
(w(x, t) ′)

2dx

]
w ′ ′

+α2

 (VD1 −VBeam)
2

( d1d3 −w)
2 − (VD0 −VBeam)

2

( d0d3 +w)
2


[U(a5 − x)−U(a4 − x)]

+α2

 (VBeam −VAC cos(Ωt))
2

( dd3 −w)
2 − VBeam

2

( dd3 +w)
2


[U(a3 − x)−U(a2 − x)]

+α2

 (VD3 −VBeam )
2

(1−w)2
− (VD2 −VBeam)

2

( d2d3 +w)
2


[U(a1 − x)−U(a0 − x)]].

(4)

The above is subjected to the non-dimensional boundary con-
ditions:

w(0, t) = w(1, t) = 0; w ′(0, t) = w ′(1, t) = 0. (5)

The non-dimensional parameters appearing in equation (4) are

α1 = 6

(
d3
b

)2

;α2 =
6εl4

Eb3d3
3 ;Nnon =

l2

EI
N̂. (6)

The deflection of the clamped-clamped micro beam under
the electrostatic force is expressed as a static normalized
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Figure 1. (a) Experimental setup with an SEM image of the fabricated micro-resonator DAC; (b) A zoomed-in picture showing the
dimensions of the obtained air gaps after fabrication. © 2020 IEEE. Reprinted, with permission, from [34].

Table 1. The specifications of the resonator.

Symbol Value Quantity Value

d0 8.74 µm â0 8 µm
d1 6.24 µm â1 163.9 µm
d2 5.41 µm â2 171.9 µm
d3 3.33 µm â3 327.8 µm
d 7.075 µm â4 335.8 µm
l 500 µm â5 491.7 µm
h 25 µm W 2.66 µm

deflection ws(x) due to the DC voltage component and a nor-
malized dynamic component due to the AC source, denoted
by wd(x, t); that is

w(x, t) = ws (x)+wd (x, t) . (7)

To determine ws(x), we set the time derivative and the AC for-
cing terms in equation (4) equal zero and obtain

ws(x)
′ ′ ′ ′ −

[
Nnon +α1

ˆ 1

0
(ws(x)

′)
2dx]ws(x)

′ ′

]

=+α2

 (VD1 −VBeam)
2

( d1d3 −ws)
2 − (VD0 −VBeam)

2

( d0d3 +ws)
2


[U(a5 − x)−U(a4 − x)]

+α2

 VBeam
2

( dd3 −ws)
2 −

VBeam
2

( dd3 +ws)
2


[U(a3 − x)−U(a2 − x)]

+α2

 (VD3 −VBeam )
2

(1−ws)
2 − (VD2 −VBeam)

2

( d2d3 +ws)
2


[U(a1 − x)−U(a0 − x)]] (8)

with the associated boundary conditions

ws(0, t) = ws(1, t) = 0;ws
′(0, t) = ws

′(1, t) = 0. (9)

By plugging equation (7) into equation (4), and only keeping
linear terms of wd after the electrostatic force is expanded in
wd by Taylor series expansions, we obtain

wd(x, t)
′ ′ ′ ′ +ws(x, t)

′ ′ ′ ′ + ẅd(x, t)+ cẇd(x, t)

=

[
Nnon +α1

ˆ l

0
(wd(x, t)

′ +ws(x, t)
′)
2dx

]
(wd(x, t)

′ ′ +ws(x, t)
′ ′)

+α2

(VD1 −VBeam)
2

 1

( d1d3 −ws)
2 +

2wd

( d1d3 −ws)
3


−(VD0 −VBeam)

2

 1

( d0d3 +ws)
2 −

2wd

( d0d3 +ws)
3


[U(a5 − x)−U(a4 − x)]

+α2

(VBeam +VAC cos(Ωt))
2

 1

( dd3 −ws)
2 +

2wd

( dd3 −ws)
3


−VBeam

2

 1

( dd3 +ws)
2 −

2wd

( dd3 +ws)
3


[U(a3 − x)−U(a2 − x)]

+α2

[
(VD3 −VBeam )

2

[
1

(1−ws)
2 +

2wd

(1−ws)
3

]

−(VD2 −VBeam)
2

 1

( d2d3 +ws)
2 −

2wd

( d2d3 +ws)
3


[U(a1 − x)−U(a0 − x)]].

(10)

By eliminating the terms representing the equilibrium position
of equation (8) and theAC term from equation (10), this yields:

4



J. Micromech. Microeng. 31 (2021) 125010 W Zhao et al

wd(x, t)
′ ′ ′ ′ + ẅd(x, t)+ cẇd(x, t)

=[Nnon +α1

ˆ l

0
(ws(x)

′)
2dx]wd(x, t)

′ ′

+α1

[ˆ l

0
((wd(x, t)

′)
2
+ 2wd(x, t)

′ws(x)
′)dx

]
[wd(x, t)

′ ′ +ws(x)
′ ′]

+α2

2(VD1 −VBeam)
2

( d1d3 −ws)
3

+
2(VD0 −VBeam)

2

( d0d3 +ws)
3 ]wd

[U(a5 − x)−U(a4 − x)]

+α2

 2V2
Beam

( dd3 −ws)
3 +

2VBeam
2

( dd3 +ws)
3

wd

[U(a3 − x)−U(a2 − x)]

+α2

2(VD3 −VBeam )
2

(1−ws)
3 +

2(VD2 −VBeam)
2

( d2d3 +ws)
3

wd

[U(a1 − x)−U(a0 − x)]]

(11)

with the associated boundary condition

wd(0, t) = wd(1, t) = 0;wd
′(0, t) = wd

′(1, t) = 0. (12)

In the following analysis, we only consider the 3-bit DAC
while keeping the D0 un-actuated to compare the analytical
result with the experimental data reported in [33, 34]. The air
gaps between the beam and the corner electrodes are adjusted
based on the weight of each bit such that the more signific-
ant bits have stronger effects on the beam. This is realized by
making the gap of D0 the largest while making the gap of D3

the smallest.
Next, we resort to the Galerkin procedure [1] to solve for

the EVP and dynamic responses of the system by assuming
the micro-beam deflection as

w(x, t) =
N∑
i=1

ui(t)ϕi(x) (13)

where φi(x) is the ith mode shape of the micro-beam at zero
voltage load and uj is its modal amplitude. Equation (13) is
then substituted into equation (11) for the EVP, and equation
(4) for the forced vibration response, then we multiply the out-
come by the mode shape, apply the orthogonality condition of
the mode shapes, and integrate over the beam domain from 0
to l. A convergence study needs to be conducted to determine
the minimum number of modes that are needed to capture the
dynamic behavior accurately [1]. In this work, for simplicity,
we use a single-mode to approximate the dynamic response.
The obtained analytical results reach good agreement with
the experimental ones. Thus, a single-mode yields sufficient
accuracy.

3. Static deflection analysis

Here, we examine the static response to better understand how
static deflection can impact the system behavior. We explore
and simulate the static response for each digital combination
cases. For the static analysis, due to the complicated denom-
inator of forcing terms in equation (8), the solution does not
easily converge and the adoption of the Galerkin method is
time-consuming. To improve the efficiency of simulations, and
obtain more accurate results, we resort to a shooting method
to solve such equations [36, 37].

Next, we solve the static response based on the shooting
method with the boundary value problem. We shoot for the
value of the complicated integral mid-plane stretching term of
equation (8) iteratively by the Newton Raphson method until
achieving convergence to within a very small predefined tol-
erance. Figure 2 shows the static deflections along the micro
beam for eight different digital input combination cases from
case-000 to case-111.

From figure 2, the static deflection curve and the max-
imum deflection point of the micro beam for different digital
input combinations are illustrated. We conclude that the static
deflection curves vary for different digital input combinations.
Also, we observe that the multi-actuated electrode configur-
ation for the digital input can shift the maximum deflection
along the micro beam. This is due to the fact that the gener-
ated electrostatic force by different digital combinations varies
along the beam, and also due to the digital electrodes with dif-
ferent gap widths. Therefore, the maximum position along the
micro beam varies with the digital input combinations.

For example, the digital case-010 (the bits D3 and D1 are
off while the D2 is on) exhibits the maximum static deflec-
tion. The electrode D3 with the smallest air-gap generates the
largest electrostatic force, and then the partial electrodes D3
and D1 on the same side of the beamwork together to yield the
higher amplitude response. However, for the digital case-111,
the electrostatic force generated by the connected corner par-
tial electrodes (D3 D2 D1) neutralize the ones from the micro
beam, thus, almost zero amplitude is generated in this case. To
examine case-100, one can see that D3 is digitally connected
while the D2 and D1 are not connected, which means the elec-
trostatic force generated by electrodes D2 andD3works on the
beam. But these forces mainly concentrate on the area around
the anchor of either side of the micro beam, which bends the
micro beam. Thus, the static deflection for case-100 is similar
to a sinusoidal function.

We notice that, compared to the smallest air gaps
(d3 = 3.33 µm), the maximum deflection for every single
digital case is very weak, particularly for the digital case-111.
Thus, in other words, the static deflection of the micro beam
at 40 V is almost zero which is negligible. As a result, we will
neglect the static deflection ws (x) when solving the EVP in
the following section.

4. Linear EVP

As pointed out previously, the static deflection is very low
when digital partial electrodes 40 V are connected. Hence, to

5
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Figure 2. The static deflection curves and marked maximum deflection point of the beam for different digital input combinations.

ease the computational cost, we solve the EVP in equations
(11) and (12) without the damping term, while also neglect-
ing the static deflection ws(x). We apply a single-mode in the
Galerkin model, and convert the partial differential equation

into an ordinary differential equation. Then, we collect the
coefficients of the linear term u(t); and take its square root,
which yields the following expression for the first natural (res-
onance) frequency of the beam under electrostatic actuation:

Freq (kHz)

=

√
−0.00684568[ (VD0−VBeam)

2d33

d03
+ (VD1−VBeam)

2d33

d13
]− 0.00679926( (VD2−VBeam)

2d33

d23
+(VD3 −VBeam)

2)− 0.072397VBeam
2d33

d3 + 20.50042

2πT× 1000
.

(14)

Note that the resonance frequency of the resonator is a com-
plicated function of eight key parameters. Based on equation
(14), the resonance frequency of a resonator can be further ana-
lyzed and optimized.

To study the operation of the DAC in the linear domain,
we experimentally test the DAC device under a large vacuum
level. Figure 3(a) shows the measured frequency curves for
different eight input combinations. For the resonator to work
as a DAC, the frequency of the drive signal should be fixed
at a selected operating frequency, for example, f 1 or f 2,
and the output level should decrease or increase when a
digital input is applied. Figure 3(b) shows the time response
when the drive frequency is fixed around f 1. The reson-
ance frequencies extracted from the experiment, figure 3(a),
are plotted in figure 3(c), in which the frequency shifts
range from 81.807 kHz for case-000 to 82.670 kHz for
case-111. Based on the derived equation (14), the analyt-
ical resonance frequencies of the resonator for different
input combinations are shown in figure 3(d). One can note
good agreement between the analytical and experimental
results.

However, it is noticed that the experimentally obtained fre-
quency response curves in figure 3(a) indicate considerable
overlaps for the output under different combinations, which
makes the amplitude levels created by different inputs at f 1
or f 2 very close and undistinguishable. Also, the range of the
frequency-shifting for different electrode combinations is not
large. It is difficult to separate each frequency curve, which is
a basic requirement for the proper operation of the DAC [34].
Here, there are two explanations. One is the voltage gener-
ated by partial electrodes can partly neutralize the one from the
micro beam. The effective power source to trigger the micro
resonator, as a result, will be reduced if more partial electrodes
are joined. Another one is that the four corner electrodes close
to the anchor of the micro beam have less influence on its actu-
ation/deformation.

To overcome this, one can optimize the sizes of air gaps
to generate various electrostatic forces along the micro beam
under different digital combination cases. By changing air
gaps, the distribution of electrostatic force along the micro
beam can be reallocated. The expected frequency shift for each
case can be improved by optimizing the air gap sizes.

6
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(a)                                                                                                         (b)

Figure 3. The resonance frequency of the beam for 3-bit-DAC (eight different input combinations). (a) Measured resonance peaks of the
resonator for each digital input combinations (50 V beam bias, 40 V digital ‘1’, 4.7 Torr, −2 dBm AC drive power. (b) Time-response curve
obtained experimentally by fixing the frequency of the drive signal at f 1 and varying the applied digital inputs, which shows how the
resonator can work as a DAC. © 2020 IEEE. Reprinted, with permission, from [34]. (c) The resonance frequencies of the beam obtained
experimentally for different input combinations. (d) Analytical resonance frequencies obtained from the developed model.

Freq(kHz)

=

√
−0.25107× 10−18( (VD2−VBeam)

2

d23
+ (VD3−VBeam)

2

d33
)− 0.252784× 10−18 (VD1−VBeam)

2

d13
− 0.26823× 10−18 VBeam

2

d3 + 20.50042

2πT× 1000
.

(15)

To optimize the air gaps, we introduce ds as a basic
scaling parameter, valued at ds = 5 µm, for normaliza-
tion (w= ŵ/ds). This process will enable us to optimize
all the gaps including d1, d2, d3, and d. It is worthy to
note that the new normalization-based ds here is mainly
responsible for the optimization part. Applying the same
normalization procedure to the obtained equation (14),

Here, we resort to multi-objective goal attainment problems
[38] of all the gaps including d1, d2, d3, and d. We optimize the
gaps over the size range from 2 µm to 8 µm. Next, we define a
target function and restricted conditions. The restrictions need
to satisfy the following conditions: (a) the difference between
each neighboring digital frequency is larger than 0.3 kHz in

7
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Figure 4. The resonance frequency for each digital case after
optimization under the following conditions: VBeam = 50 V, digital
‘1’ = 40 V, digital ‘0’ = 40 V.

Figure 5. Forward frequency sweeps for the resonator working in
the linear regime for each input combination under the following
conditions: damping c = 0.25, VBeam = 50 V, digital ‘1’ = 40 V,
digital ‘0’ = 40 V.

a specific domain; (b) the frequency difference between the
last case (111) and first case (000) is not too far away; (c) and
the frequency linearly and monotonically increase between
each case. We optimize the frequency based on the equation
(15). The outcome of the optimized gaps is d1 = 5.47 µm,
d2 = 4.53 µm, d3 = 3.58 µm, d = 4.84 µm. The simulation
results based on these values are shown in figure 4. As noted
in figure 4, the resonance frequencies for each digital case are
linearly ordered.

5. Forced vibration response

To further study the forced vibration response of the micro-
beam, we apply the procedure of the Galerkin discretization
with a single-mode. First, we substitute equation (13) into

equation (4), multiply both sides of the outcome by φj, and
then we integrate the results from the beam domain zero to
one. The outcome yields:

ü1(t)+ cu̇1(t)+ω2
nonu1(t)

= α1

ˆ 1

0
(ϕ ′

1(x)u1(t))
2dx
ˆ 1

0
ϕ1(x)ϕ

′ ′
1(x)dx u1(t)

+α2[(VD1 −VBeam)
2
ˆ 1

0

ϕ1(x)

( d1d3 −ϕ1(x)u1(t))
2

[U(a5 − x)−U(a4 − x)]dx− (VD0 −VBeam)
2

ˆ 1

0

ϕ1(x)

( d0d3 +ϕ1(x)u1(t))
2 [U(a5 − x)−U(a4 − x)]dx

+α2[(VBeam −Vac cos(Ω t))2
ˆ 1

0

ϕ1(x)

( dd3 −ϕ1(x)u1(t))
2

[U(a3 − x)−U(a2 − x)]dx−VBeam
2

ˆ 1

0

ϕ1(x)

( dd3 +ϕ1(x)u1(t))
2 [U(a3 − x)−U(a2 − x)]dx

+α2[(VD3 −VBeam )
2
ˆ 1

0

ϕ1(x)

(1−ϕ1(x)u1(t))
2

[U(a1 − x)−U(a0 − x)]dx− (VD2 −VBeam)
2

ˆ 1

0

ϕ1(x)

( d2d3 +ϕ1(x)u1(t))
2 [U(a1 − x)−U(a0 − x)]dx. (16)

Next, we rewrite equation (16) by assuming u1 (t)= Y as below

Ÿ+ cẎ+w2
nonY

= a1

ˆ 1

0
(ϕ1(x)

′)
2dx
ˆ 1

0
ϕ1(x)ϕ1(x)

′ ′ dxY3

+ a2[(VD1 −VBeam)
2F1(t)− (VD0 −VBeam)

2F2(t)]

+ a2[(VBeam −VAC cos(Ωt))
2F3(t)−VBeam

2F4(t)]

+ a2[(VD3 −VBeam )
2F5(t)− (VD2 −VBeam)

2F6(t)] (17)

in which Y is a modal coordinate amplitude. Above, the vari-
ous function Fi (Y) are defined as

F1(Y) =
ˆ 1

0

ϕ1(x)

[ d1d3 −ϕ1(x)Y]
2 [U(a5 − x)−U(a4 − x)]dx; F2(Y)

=

ˆ 1

0

ϕ1(x)

[ d0d3 +ϕ1(x)Y)]2
[U(a5 − x)−U(a4 − x)]dx

F3(Y) =
ˆ 1

0

ϕ1(x)

[ dd3 −ϕ1(x)Y]
2 [U(a3 − x)−U(a2 − x)]dx; F4(Y)

=

ˆ 1

0

ϕ1(x)

[ dd3 +ϕ1(x)Y]
2 ][U(a3 − x)−U(a2 − x)]dx

F5(Y) =
ˆ 1

0

ϕ1(x)

[1−ϕ1(x)Y]
2 [U(a1 − x)−U(a0 − x)]dx; F6(Y)

=

ˆ 1

0

ϕ1(x)

[ d2d3 +ϕ1(x)Y]
2 ][U(a1 − x)−U(a0 − x)]dx. (18)
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Figure 6. Experimentally forward and backward frequency sweeps for the resonator working in the non-linear regime for each input
combination under the following conditions: 40 mTorr, 40 V beam bias, 40 V digital ‘1’, 0 V digital ‘0’ and −2 dBm input AC signal power
in (a) frequency response (b) the S21 parameter for transitions from 111 to 000 in descending order at f 1. © 2020 IEEE. Reprinted, with
permission, from [34].

Figure 7. Simulated frequency response curves under each digital input combination under the following conditions: VBeam = 40 V, digital
‘1’ = 40 V, digital ‘0’ = 40 V, damping c = 0.0025.

Due to the term with Y in the denominator of the elec-
trostatic force terms, the integral terms are not easily evalu-
ated, which will cause computational problems [1, 39]. One
approach to resolve this issue is by pre-calculating numeric-
ally these complicated terms F1(Y), F2(Y), F3(Y), F4(Y), F5(Y),
F6(Y) of equation (18) for each step of ∆Y = 0.05, and then
tabulate and store them, as shown in the appendix. Once the
table is built, it can be recalled for each time step of the needed
numerical integration. Next, we can adopt the shooting tech-
nique to solve the forced vibration problem based on equation
(17) combined with equation (18). It is noted that the shooting
method [1] is a powerful numerical technique that is widely
used to capture the periodic motions of the system, including
the stable and unstable branches of the solutions. The stability

of the periodic solution also can be assessed using the Floquet
theory.

Here, to clarify the DAC function well in the linear domain,
we solve the forced vibration response by the method of shoot-
ing and conduct the frequency sweeps around the primary res-
onance by using the optimized air gap sizes. One can notice
that the frequency for each digital case in figure 5 shows lin-
ear response and shift to the higher frequency due to the differ-
ent digital input ranging from the case-000 to case-111. When
the DAC resonator is operated at any single driven frequency
signal such as f 1 or f 2, the corresponding output response
can be clearly distinguished. For example, the output level, at
different driving signals f 1 or f 2, can significantly decrease
or increase when subjected to the different digital input bits.

9
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Figure 8. The frequency-amplitude response for digital case-000.

Figure 9. Forward and backward frequency sweep for the resonator working in the non-linear regime for each input combination under the
following conditions: 40 mTorr, 40 V beam bias, 40 V digital ‘1’, 0 V digital ‘0’ and −12 dBm: (a) experimental, (b) simulation. © 2020
IEEE. Reprinted, with permission, from [34].

Therefore, the optimized resonator-based DAC can function
well in the linear domain compared to the previously proposed
one of figure 3(a).

It is worthy to mention that the proposed resonator-based
DAC also can work in the nonlinear regime. Next, we can
examine the operation of the proposed DAC in the nonlin-
ear regime if we properly adjust the input power source and
vacuum level (damping). Here, two experimental samples with
very low damping are considered. It is noted that the frequency
response curves are evaluated by calculating the average amp-
litude response value between maximum and minimum of
the steady-state response for each case when conducting time
integration.

Here, we compare the experimental data with the analytical
results [34]. Figure 6(a) experimentally demonstrates the for-
ward and backward frequency sweep of the resonator in the
nonlinear regime for all digital combinations under −2 dBm
AC input power level. Due to the different air gap sizes
between the beam and digital input electrodes, distributions
of the electrostatic load will be non-uniform along the micro
beam and it will generate differences for each of the input
combinations. In the nonlinear operation, one can notice that
the amplitude response in the forward frequency sweep bends
to higher values, nonlinear hardening behavior, due to the
dominant mid-stretching nonlinearity over the softening elec-
trostatic one. Figure 6(b) shows the S21 parameter subjected

10
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Figure 10. The effect of VBeam on the DAC operation of the condition 40 V digital ‘1’, 0 V digital ‘0’, damping c = 0.0025 and
AC = −2 dBm power level (a) for digital case-011; (b) for digital case-111.

to the digital inputs ranging from case-111 to case-000, in
descending order. We can see that the digital case-000 input
has the largest amplitude at operating point f 1 while case-111
has the smallest one. That is because the digital bits for case-
111 generates the least influence on the actuation of the micro
beam.

The frequencies are swept under different digital input
combinations and the inset for forward and backward fre-
quency is shown in figure 7. The analytical results of figure 7
have good agreement with the experiment data of figure 6(a).
To better understand the behavior at reached maximum excit-
ation frequency point, we examine their eigenvalues (Floquet
Multipliers) at that point. We found that the Multipliers of
the system gradually approach the boundary of the unit circle
when the excitation increases, and then the microsystem gen-
erates cyclic fold bifurcation phenomenon [1] at the maximum
reached frequency.

As mentioned, the shooting technique can capture all
the periodic motions. Figure 8 depicts the appearance of
three periodic solutions (for digital case-000) with differ-
ent amplitude levels consisting of the upper branch (reson-
ance stable branch, blue), the lower branch (non-resonance
stable branch, magenta), and the intermediate branch (unstable
branch, orange), which mainly depend on the initial condi-
tions. As the frequency of excitation is increased or decreased,
there are jumps in the response amplitude. For the forward
excitation frequency sweep, we note that one Floquet multi-
plier approaches unity at the maximum amplitude of 3.59 µm,
and also the upper stable branch and unstable branch are inter-
sected at the point of the reached maximum frequency. This
indicates a cyclic fold bifurcation [1].

Figure 9 compares the dynamic response between the-
ory and experiment at −12 dBm AC input signal power
[30]. We notice that decreasing the AC source can lower

the amplitude response. The frequency response curves
experimentally and analytically show the same nonlinear
hardening behavior. Thus, we observe a satisfactory agree-
ment for the response among experimental and analytical
results.

Next, we notice that electrode D3 (with the smallest air
gap), and VBeam both play a significant role in the operation
of the DAC. To clarify the influence of the electrode D3, we
select the representative samples digital case-011 (represent
the first four cases, D3 ‘off’) and case-111 (represent the last
four cases, D3 ‘on’) in figures 10(a) and (b), respectively.
From the simulated results, one can notice that lowering VBeam

can make the frequency-swept curve right-shifted and clearly
distinguished due to the nonlinear softening effects. Also we
note that VBeam also can generate a big difference for case-011,
compared to the case-111.

6. Conclusions

In this work, we analytically and experimentally presented
modeling, investigation, validation, and optimization of the
MEMS resonator-based 3-bit DAC consisting of an in-plane
clamped-clamped beam actuated by partial electrodes with
different air-gap. First, we derived a dynamic equation of
the proposed 3-bit DAC device, and the static response, lin-
ear EVPs, and dynamic response were solved then based
on the method of the Galerkin-shooting technique. Second,
to ensure the DAC function well in the linear domain, we
optimized the size of air gaps. The optimized results indic-
ate that the frequency responses ranging from the digital case
‘000’ to ‘111’ are monotonically increasing, linearly ordered,
and significantly separated for the output at a single fre-
quency. Third, we experimentally and analytically explored

11
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two samples of the DAC device under the nonlinear opera-
tion at −2 dBm and −12 dBm AC power levels, respectively.
Forward and backward frequency sweeps were also invest-
igated for all digital cases and were validated with meas-
ured results. The frequency response exhibit the characteristic
bending toward higher frequencies and show the nonlinear
hardening behaviors due to the high mid-plane stretching
term. Moreover, we also notice that decreasing the AC power
level from −2 dBm to −12 dBm can reduce the amplitude
response and swept-range of the frequency curves. Last, we
explored and discussed the effects of VBeam on the DAC
operation. Thus, the results suggest that the proposed mod-
eling, simulations, and optimization analysis could be suc-
cessfully implemented in the design of the DAC under vari-
ous digital combinations. The rich nonlinear behavior with
lower energy consumption could provide some high potential
applications in IoT, such as logic, computation, sensing, and
actuation.
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Appendix

The direct integration of equation (16) canmake the simulation
very slow when we analyze the dynamic system [40]. To over-
come this and improve the efficiency, first, we numerically
integrate the complicated terms Fi(Y) and then store the values
in a table choosing the step ∆Y = 0.05. Here, the numerical
evaluation Fi(Y) is reported.
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Figure A. Evaluations of Fi(Y) by the numerical integration.
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