

British Journal of Mathematics & Computer Science

11(5): 1-18, 2015, Article no.BJMCS.19903

ISSN: 2231-0851

SCIENCEDOMAIN international
www.sciencedomain.org

*Corresponding author: Email: eleghk@nus.edu.sg;

Computational Algorithms for Syndrome Based Single Error
Correction in Residue Number Systems

Hari Krishna Garg 1*

1Department of Electrical and Computer Engineering, National University of Singapore, Singapore.

Article Information

DOI: 10.9734/BJMCS/2015/19903

Editor(s):
(1) Doina Bein, Applied Research Laboratory, The Pennsylvania State University, USA.

Reviewers:
(1) Anonymous, R. O. C. Military Academy, Taiwan.

(2) Dominik Strzalka, Rzeszów University of Technology, Poland.
Complete Peer review History: http://sciencedomain.org/review-history/11333

Received: 12 July 2015
Accepted: 20 August 2015

Published: 09 September 2015

Abstract

Error control via residue number systems continues to attract researchers’ attention as evidenced by
recent publications dealing with their applications in digital communications and computing. In this
paper, we present syndrome based decoding algorithms and analyze their algebraic structure for single
error correction in such systems. The mathematical framework is also extended to single error correction
and simultaneous multiple error detection. We also bring residue number system product codes under the
same framework. Specifically, all the algorithms are based on the computation of a single syndrome
value. Computational aspects are also studied along with conditions for the validity of the syndrome
based algorithmic approach being described here. Numerous examples are given to illustrate the structure,
properties, and decoding procedures associated with the algorithms.

Keywords: Computer arithmetic; Chinese remainder theorem (CRT); residue number systems (RNS); error
control; redundant residue number systems (RRNS); single error correction (SEC); multiple
error detection (MED).

Abbreviations

CRT : Chinese remainder theorem,
RNS : Residue number systems,
RRNS : Redundant residue number systems,
RNS-PC : Residue Number System-Product Code,
SBEC : Syndrome based error control,
SEC : Single error correction,

Original Research Article

Garg; BJMCS, 11(5): 1-18, 2015; Article no.BJMCS.19903

2

MED : Multiple error detection,
BE : Base extension,
MRC : Mixed radix conversion,
MDS : Maximum Distance Separable,
SA : Superfast Algorithm.

1 Introduction

One of the most popular ways to perform error control in a system, be it a communication or a computing
system, is to use an appropriate amount of redundancy. Thus, if q is the original information, it is encoded
into a codeword x such that certain most commonly occurring errors in c can be corrected. Most
phenomenon that introduce errors are modelled as additive in nature, that is

y = x + e. (1)

Given y, the first step in many syndrome-based error control (SBEC) algorithms is to compute syndrome
that depends only on the error e,

s = S(y) = S(x + e) = S(x) + S(e) = S(e). (2)

The second step, is to estimate e from the syndrome s. This can be done via a computational algorithm or a
table look-up method. Thus

ê = T(s). (3)

Finally, we assume,

y = x
)

 + ê (4)

to decode y to

x
)

 = y – ê . (5)

Equivalence between a computational algorithm and table look-up method to carry out the task in (3) is well
known in classical coding theory. It is possible to use the method described above to compute more than one
possible candidate for ê in (3) and hence for x

)
 in (5). Such x

)
 candidates can then be tested for their

validity as a codeword. In our work, we restrict our attention to a single pass where the error ê as computed
in (3) is unique. Also other methods for decoding, such as ‘error trapping,’ will also not be studied here.

The above described methodology has also been applied to error control in Chinese remainder theorem
(CRT) based residue number systems (RNS) [1]. With redundancy built in for error control, such RNS are
termed redundant RNS or RRNS. RRNS continue to attract researchers’ attention as evidenced by recent
publications dealing with their applications to digital communication and computing systems. The reader is
referred to [2-5] for such applications. In addition to RRNS, RNS product codes (RNS-PC) also present an
attractive alternative to RRNS for error control in RNS. Both RRNS and RNS-PC will be pursued in this
work. When applied to RRNS and RNS-PC, SBEC methods have an additional feature, termed residual
effect, to be taken into consideration. The syndrome s in (2) may not depend exclusively on e, but also on x.
As we will establish in this paper, the impact of residual effect depends on algebraic structure of the method
used for error control.

In this work, we derive new computational algorithms for single error correction (SEC) and its extensions to
simultaneous multiple error detection (MED) in RRNS and RNS-PC. A rigorous analysis of the residual
effect is also carried out. Computational aspects are also studied along with conditions for the validity of the

Garg; BJMCS, 11(5): 1-18, 2015; Article no.BJMCS.19903

3

syndrome based algorithmic approach adopted. Numerous examples are given to illustrate the structure of
these algorithms. The key idea of the paper is to use a single syndrome value to carry out the computations
required for the task at hand. The approach to use a single syndrome was first described in a recent paper [6]
that the current author finds very interesting.

The contributions of this work are two folds. First, many of the existing algorithms for error control in
RRNS that utilize multiple syndromes are now reformulated such that they utilize a single syndrome value in
a computationally equivalent manner. Collectively, such algorithms for SEC and their extensions for
simultaneous MED are called SEC. Second, a new syndrome is defined that can be computed using a
superfast algorithm (SA) to further simplify the computations involved in error control in RRNS and RNS-
PC. This second class of SA for SEC using a single syndrome value is termed SEC-SA. The focus in this
work is on SEC and SEC-SA for RRNS and RNS-PC.

The organization of this paper is as follows. In section II, the basic framework for RRNS and RNS-PC for
error control is presented. Syndrome is defined as a single integer value to be used for determining all single
error events. Section III describes residual effect and decoding algorithms for SEC and SEC-MED RRNS. A
superfast approach for the computation of syndrome and the corresponding SEC-MED algorithm for RRNS
is described in section IV. Conclusions are presented in section V.

It is worthwhile to mention here that we are driven by computational complexity considerations all
throughout this work. However we refrain from making statements implying that the computational
complexity is the only measure of the overall performance of an algorithm. Further, the need to process large
valued integers is avoided in the design of error control algorithms. Instances of such methods that use large
valued integers include modulus projection method among many others. Readers may find the research
results reported in [7-10] interesting and relevant.

2 Error Control in RRNS & RNS-PC

RNS. A RNS is a finite integer ring Z(MK) defined by k relatively co-prime moduli m1, m2, ..., mk, arranged
in ascending order without any loss of generality. The range of the RNS is given by [0, MK) where

∏
=

=
k

i

iK mM
1

. (6)

An integer X ∈ [0, MK) in the given RNS is represented as a length k vector x via the modulo computations,

X ↔ x = (x1 x2 ... xk), (7)

where

xi ≡ X modulo mi, i = 1, 2, ..., k. (8)

We assume that all residues are positive. Thus, 0 ≤ xi < mi, i = 1, 2, ..., k. Modulo will be written as ‘mod’
from here on. Negative integers are converted to equivalent positive values. Thus, X ≡ –a mod m = m – a, 0
< a < m. Two observations associated with RNS that play a key role in the decoding algorithms are as
follows.

Observation 1. If all residues are equal, say X ↔ x = (a a ... a), 0 ≤ a < m1, then X = a.

Observation 2. If all residues are equal, say X ↔ x = (–a –a ... –a), 0 < a < m1, then X = –a.

Garg; BJMCS, 11(5): 1-18, 2015; Article no.BJMCS.19903

4

Chinese remainder theorem (CRT). Given x, computation of X, 0 ≤ X < MK, is done via the CRT
reconstruction, stated as

K

k

i i

K
ii M

m

M
txX mod

1
∑

=

⋅⋅≡ , (9)

where ti is computed a-priori by solving the congruence

i

i

K
i m

m

M
t mod1≡

⋅ , i = 1, 2, …, k. (10)

It is clear from (10) that

gcd(ti, mi) = 1, i = 1, 2, …, k. (11)

The CRT computation in (9) can be performed in two steps:

Step 1: Compute the permuted residues

iiii mtxx mod⋅≡′ , i = 1, 2, …, k. (12)

Step 2: Compute X as

K

k

i i

K
i M

m

M
xX mod

1
∑

=

⋅′≡ . (13)

Computation of X from x involves large integers when the dynamic range of RNS is large. Another way to
express CRT reconstruction of X in (9) is as follows:

Kx

k

i i

K
ii M

m

M
txX ⋅−

⋅⋅≡∑

=

θ
1

. (14)

The ‘mod MK’ computation in (9) is performed in (14) as a subtraction by a multiple of MK such that 0 ≤ X <
MK. We note that θx is unknown and needs to be determined from the residues x.

RRNS. RRNS is obtained by appending (n – k) additional relatively co-prime moduli, mk+1, ..., mn, to the
RNS defined by moduli (m1 m2 ... mk). We further assume that the moduli (m1 m2 ... mk mk+1 ... mn) are
arranged in an ascending order. The RRNS is a (n, k) code. The redundancy of the RRNS is given by

∏
+=

=
n

ki
iR mM

1

. (15)

An integer X ∈ [0, MK) in the given RNS is represented as a length n codeword x via the modulo
computations,

X ↔ x = (x1 x2 ... xk xk+1 ... xn), (16)

Garg; BJMCS, 11(5): 1-18, 2015; Article no.BJMCS.19903

5

where

xi ≡ X modulo mi, i = 1, 2, ..., n. (17)

The k residues (x1 x2 ... xk) constitute the information part and (n – k) residues (xk+1 ... xn) the parity/redundant
part. Let

MN = MK ⋅ MR. (18)

The RRNS as defined here is a maximum distance separable (MDS) code having minimum distance

d = n – k + 1. (19)

Minimum distance is the smallest Hamming distance between two distinct codewords. It also turns out to be
the Hamming weight of a non-zero codeword with the smallest Hamming weight [1]. In general, a RRNS
that can simultaneously correct α and detect β (β > α) residue errors has d = α + β + 1. A SEC RRNS is
obtained by setting d = 3, α = 1. For SEC-MED (multiple error detecting) RRNS, α = 1, β = d – 2. For
example, a minimum distance 4 RRNS can simultaneously correct 1 and detect 2 residues in error. .

Example 1. Consider a (4, 2) RRNS defined by (m1 m2 m3 m4) = (11 13 14 15). The legitimate range is [0,
143), MR = 210. This is a SEC. Given the integer X = 25 ∈ [0, 143), we have x = (3 12 11 10). If we extend
this RRNS with a third redundant moduli, say m5 = 17, we get a (5, 2) SEC-DED (double error detecting)
RRNS.

An error ei (ei ≠ 0) in the i-th residue leads to the received residue vector y,

y = x + e, (20)

where,

yi ≡ (xi + ei) mod mi, i = 1, 2, ..., n. (21)

For an error, both its location, i such that ei ≠ 0, and value, ei ≠ 0, are unknown.

Syndrome. Given the residues, y = (y1 y2 ... yk yk+1 ... yn), let Y

~
 ∈ [0, MK) and YR ∈ [0, MR) represent two

integers for the information residues (y1 y2 ... yk) and the parity residues (yk+1 ... yn), respectively. They may
be computed using CRT reconstruction or using some other method such as mixed radix conversion (MRC).
For RRNS the syndrome is an integer δ with value in the range [0, MR). It is defined as,

δ ≡ (Y
~

 – YR) mod MR ≡ (Y
~

 mod MR – YR) mod MR. (22)

Given the residue vector y, the first step in decoding algorithms for RRNS is syndrome computation in (22).

RNS-PC. For notational consistency, RNS-PC is defined by n moduli (m1 m2 ... mn) such that all codewords
when converted to equivalent integer form are divisible by a code-generator integer A, where (A, mj) = 1, j =
1, 2, ..., n.

∏
=

=
n

i
iN mM

1

. (23)

Thus, all integers X in the legitimate range [0, MN / A) are first multiplied by A and then converted to a
codeword x such that

Garg; BJMCS, 11(5): 1-18, 2015; Article no.BJMCS.19903

6

A ⋅ X ↔ x = (x1 x2 ... xn), (24)

where

xi ≡ X modulo mi, i = 1, 2, ..., n. (25)

Here, MN / A is the well-known floor function.

Syndrome. Given the received residues, y = (y1 y2 ... yn), let Y

~
 ∈ [0, MN) represent the integer for the

residue vector y. For RNS-PC the syndrome is an integer δ with value in the range [0, A). It is defined as,

δ ≡ Y
~

 mod A. (26)

Given the residues, the first step in decoding algorithms for RNS-PC is syndrome computation in (26).

It is clear from the above description that if there are no errors, then x = y for either of RRNS or RNS-PC
and δ = 0 in (22) for RRNS and in (26) for RNS-PC. Further, though the use of a single syndrome for error
control is rather new in RRNS [6], the error control techniques for RNS-PC have always used a single
syndrome. Single syndrome based approach to error control for RNS provides a unified framework for
algorithm design for seemingly different methodologies. We assume existence of a computational technique

to compute Y
~

 and YR as defined and hence δ in (22) and (26). There exists a significant body of literature on
this topic. We refer the readers to [11] for a base extension (BE) method using MRC.

3 SEC Algorithms in RRNS

In this section, we deal with SEC RRNS. We begin our analysis with the effect of information residues on
the syndrome manifested via a phenomenon termed ‘residual effect’.

Residual effect. We observe that the information and parity residues are treated differently in RRNS while
all residues are treated in an identical manner in RNS-PC. Based on (21), if there are one or more errors in
the information residues, we have

Y
~

 ≡ (X + EI) mod MK = X + EI – a ⋅ MK. (27)

EI has residues (e1 ... ek). Here either a = 0 if X + EI < MK or a = 1 if X + EI > MK. Similarly, if there are one
or more errors in the parity residues, we have

YR ≡ (X + EP) mod MR = X mod MR + EP – b ⋅ MR. (28)

EP has residues (ek+1 ... en). Here either b = 0 if X mod MR + EP < MR or b = 1 if X mod MR + EP > MR.

Substituting Y
~

 in (27) and YR in (28) into (22) we get

() ()[] RRPRRKI MMbEMXMMaEXδ modmodmod ⋅−+−⋅−+≡

 () RKPI MMaEE mod⋅−−= . (29)

It is seen from (29) that for the syndrome as calculated in (22) for RRNS, residual effect of X is present in
the syndrome via the unknown value ‘a’. This value gives rise to its own constraints. We note that RNS-PC
has the residual effect only due to (27). Thus,

() AMaEXAδ N mod⋅−+⋅≡ ≡ (E – a ⋅ MN) mod A (30)

Garg; BJMCS, 11(5): 1-18, 2015; Article no.BJMCS.19903

7

for RNS-PC. Again, residual effect of X is present via the unknown value of ‘a’. In the remainder of this
section, we describe SEC algorithms for RRNS.

3.1 Minimum Distance 3 RRNS

In this sub-section, we deal with minimum distance 3 RRNS with n = k + 2. The two known SEC algorithms
that we compare in this work are available in [12] and [6]. We show them to be computationally equivalent.
Hence it is reasoned that the conditions for their validity are also identical. Further a computational
algorithm is described for SEC based on a single syndrome.

Algorithm 1 [12]

Given the residues, y = (y1 y2 ... yk yk+1 yk+2), let Y

~ ∈ [0, MK) represent the integer for the information
residues (y1 y2 ... yk). For the SEC decoding algorithm of [12], step 1 is syndrome computation. It computes
two values (eqn 7.3.1 [1]),

δ1 ≡ (Y
~

 – yk+1) mod mk+1 ≡ (Y
~

 mod mk+1 – yk+1) mod mk+1 (31)

δ2 ≡ (Y
~

 – yk+2) mod mk+2 ≡ (Y
~

 mod mk+2 – yk+2) mod mk+2. (32)

In step 2, error correction is performed as a computational procedure. If δ1 = δ2 = 0, y is error-free. If only
one of (δ1 δ2) is 0, the corresponding parity digit is assumed to be in error and corrected. If both the
syndromes are non-zero, then an error is assumed in i-th information residue and value of error residue is
computed if the assumption is found to be valid, i = 1, 2, ..., k.

Algorithm 2 [6]

The step 1 of this algorithm computes the syndrome as defined in (22). It is clear that (29) also holds. Thus,
for the syndrome in (22) or (29), residual effect of X is present via the unknown value of ‘a’ in (29). In step
2, error correction is performed via a table look-up.

Algorithm 1 avoids processing large valued integers by using BE and MRC techniques for computing δ1 and

δ2 in (31) and (32), while Algorithm 2 uses CRT to first compute Y
~

 and YR before carrying out mod MR
operation in (22). We emphasize that the above described algorithms compute essentially the same quantities
though they follow different computational approaches. In that regard, they are equivalent. We observe that
the phrases ‘computational equivalence’ or ‘algorithm equivalence’ are known in Computer Science [13].

Theorem 1. The first steps of algorithms 1 and 2 are equivalent.

Proof. With MR as defined in (15), CRT establishes equivalence between residues δ1 and δ2 expressed
modulo mk+1 and mk+2 in (31) and (32), respectively, and the residue δ modulo MR in (22). It is seen that, δ1 ≡
δ mod mk+1 and δ2 ≡ δ mod mk+2.

Example 2. For the example in [6], the (5, 3) RRNS is given by moduli (7 9 11 13 17), MR = 221. Let y =
(5 5 9 8 8). As per the computation in [6], Y

~
 = 383, YR = 8 and δ ≡ (Y

~
 – YR) mod MR = (383 – 8) mod 221

= 154. As per Algorithm 1, δ1 ≡ (Y
~

 mod mk+1 – yk+1) mod mk+1 ≡ (6 – 8) mod 13 = 11, δ2 ≡ (Y
~

 mod mk+2 –
yk+2) mod mk+2 ≡ (9 – 8) mod 17 = 1. The equivalence is seen as δ1 = 11 ≡ δ mod 13 = 154 mod 13 = 11 and
δ2 = 1 ≡ δ mod 17 = 154 mod 17 = 1.

Given the equivalence of step 1 of two algorithms, we now examine conditions for the validity of their step
2. Step 2 of both algorithms provides the same output, realized via computations in [12] and table look-up in
[6]. Since the inputs to the step 2 of both algorithms are equivalent, it is imperative that the conditions for

Garg; BJMCS, 11(5): 1-18, 2015; Article no.BJMCS.19903

8

effectively countering residual effect in one algorithm must apply to the other. Therefore in addition to the
redundancy constraint MR = mk+1 ⋅ mk+2, the necessary and sufficient conditions for algorithms 1 and 2 to
provide a correct solution can be stated as follows.

Theorem 2. If the information moduli mi and mj are such that there do not exist integers ni and nj, 0 < ni <
mi, 0 < nj < mj that satisfy

ni ⋅ mj + nj ⋅ mi = mk+1 ⋅ mk+2, i, j = 1, 2, …, k; (33)

then solutions in step 2 of algorithms 1 and 2 are correct under the assumption that at most one error has
occurred.

Note that this is same as Theorem 8.1 in [1, p 191] stated for Algorithm 1. The condition

mk+1 ⋅ mk+2 > 2 ⋅ mi ⋅ mj – mi – mj (34)

is a sufficient condition to (33) obtained from (33) by replacing integers ni and nj by their maximum values
mi – 1 and mj – 1, respectively. It may also be used to eliminate those pairs of information moduli mi and mj
that need not be tested for (33). In our work, we have found many cases of RRNS that satisfy (33) as well as
those that don’t. Some of them will be mentioned in the following. We note that the RRNS in example 2
(taken from [6]) satisfies the sufficient condition in (34). Further, contrary to what is stated in [6], we
reassert that for the step 2 of Algorithm 2 to be valid, conditions in (33) or (34) must be satisfied. There is
an oversight in the analysis of case 1 of theorem 2 in [6]. The correct expression that must have been used is

iKii mMaE = instead of iRKii mMMaE = .

Example 3. Consider the (4, 2) RRNS in example 1. Here, m1 ⋅ m2 = 143 < m3 ⋅ m4 = 210 < 2 ⋅ m1 ⋅ m2 – m1
– m2 = 262. Further, 12 ⋅ m1 + 6 ⋅ m2 = 132 + 78 = m3 ⋅ m4 = 210. Thus the condition for a unique association
between the syndrome and the error (location and value) is violated. For the codeword X = 136 ↔ x = (4 6
10 1), let a single error be (0 11 0 0). Thus, y = (4 4 10 1). The corresponding syndrome is

δ ≡ (Y
~

 mod MR – YR) mod MR = (4 mod 210 – 136) mod 210 = 78.

Similarly, for the codeword X = 16 ↔ x = (5 3 2 1), let a single error be (1 0 0 0). Thus, y = (6 3 2 1). The
corresponding syndrome is

δ ≡ (Y
~

 mod MR – YR) mod MR = (94 mod 210 – 16) mod 210 = 78.

It is not surprising that syndrome δ = 78 is obtained for multiple codewords when they are corrupted by
single error events (1 0 0 0) or (0 11 0 0). Similarly, syndrome δ = 132 is obtained for multiple codewords
when they are corrupted by either the single error event (10 0 0 0) or (0 2 0 0). In all such cases, there exists
no unique relationship between the syndrome δ and single error events. Hence neither algorithm 1 nor
algorithm 2 can be used for error correction with these moduli. As per [6], Algorithm 2 can be used for SEC
in this case. This is erroneous.

Example 4. Consider the (8, 6) RRNS defined by the residues (23 25 27 29 31 32 37 43). Here, m7 ⋅ m8 =
1591. We need to test the condition of Theorem 2 for the residue pairs (m6 m5) = (32 31), (m6 m4) = (32 29),
(m6 m3) = (32 27), (m5 m4) = (31 29), and (m5 m3) = (31 27) as for each of them 2 ⋅ mi ⋅ mj – mi – mj > 1591.
These values are (1921 1795 1669 1738 1616). A quick evaluation of the linear Diophantine equation in (33)
leads to no solution in any of the 5 cases. The obtained solutions are 10 ⋅ m6 + 9 ⋅ m5 = 599, 18 ⋅ m6 + 3 ⋅ m4
= 663, 5 ⋅ m6 + 21 ⋅ m3 = 727, 25 ⋅ m5 + 26 ⋅ m4 = 1529, and 13 ⋅ m5 + 13 ⋅ m3 = 754. Hence this RRNS can be
decoded using either of the two algorithms.

Garg; BJMCS, 11(5): 1-18, 2015; Article no.BJMCS.19903

9

Example 5. Consider the (8, 6) RRNS defined by the residues (23 25 27 29 31 32 41 43). Here, m7 ⋅ m8 =
1763. We need to test the condition (33) of Theorem 2 for the residue pairs (m6 m5) = (32 31) and (m6 m4) =
(32 29) as for each pair 2 ⋅ mi ⋅ mj – mi – mj > 1763. These values are 1921 and 1795. A quick evaluation of
the linear Diophantine equation in (33) leads to a solution in both cases given by 27 ⋅ m6 + 29 ⋅ m5 = 864 +
899 = 1763 and 27 ⋅ m6 + 31 ⋅ m4 = 864 + 899 = 1763. Hence, neither of the two algorithms can be used for
decoding this RRNS. There will be several single error events each with syndrome values of 864 and 899.

Algorithm 1 uses two syndromes in step 1 and a computational procedure for determining error
location/value in step 2. We now describe a computational procedure for step 2 of Algorithm 1 that uses a
single syndrome as in (29).

Step 2 of Algorithm 1 (single syndrome based): Error computation

Input: Syndrome integer δ.

Output: Corrected residue once error (i and ei such that ei ≠ 0) is known.

A. No Error. If δ = 0, no error is declared. STOP.
B. Error in parity residue. Compute

 δ1 ≡ δ mod mk+1,
 δ2 ≡ δ mod mk+2.

If only one of δ1 and δ2 = 0, then parity residue with non-zero δ1 or δ2 is in error. If δ1 ≠ 0 then ek+1 = –δ1. If
δ2 ≠ 0 then ek+2 = –δ2. Go to D.

C. Error in information residue. Compute

∆ ≡ (MK)–1 ⋅ δ mod MR.

For j = 1, 2, ..., k, compute

e1,j ≡ mj ⋅ ∆ mod MR,
 e2,j = MR – e1,j.

If either one of e1,j or e2,j ∈ (0, mi) then j-th residue is declared to be in error,

where

ej ≡ (tj)

–1 ⋅ e1,j mod mj ≡ [(MK / mj) mod mj] ⋅ e1,j mod mj,

if 0 < e1,j < mj, and

ej ≡ mj – (tj)

–1 ⋅ e2,j mod mj ≡ mj – [(MK / mj) mod mj] ⋅ e2,j mod mj ,

if 0 < e2,j < mj. Next, go to D.

D. Single residue correction. For i-th residue in error, i ∈ (1 2 … k + 2), error correction is carried
out as

xi ≡ (yi – ei) mod mi.

E. End

Garg; BJMCS, 11(5): 1-18, 2015; Article no.BJMCS.19903

10

Scalars ti, used in CRT reconstruction of Y
~

, are obtained by solving the congruence, ti ⋅ (MK/mi) ≡ 1 mod mi,
i = 1, 2, …, k. Thus, (ti)

–1 ≡ (MK/mi) mod mi.

We illustrate this computational step with an example.

Example 6. This is a continuation of example 2. The (5, 3) RRNS is given by moduli (7 9 11 13 17), MK =
693, MR = 221. We need the following one-time pre-computations for steps 1 and 2: (t1 t2 t3) = (1 2 7) to
compute Y

~
from residues (y1 y2 y3) and (t4 t5) = (10 4) to compute YR from residues (y4 y5). Also, (t1

–1 t2
–1 t3

–1)
= (1 5 8) and (MK)–1 mod MR = 140. Let y = (5 4 1 8 8). In this case, Y

~
 = 166, YR = 8, and δ ≡ (Y

~
 – YR) mod

MR = (166 – 8) mod 221 = 158. As δ ≠ 0, we proceed as follows:

Step B.

δ1 ≡ δ mod mk+1 = 158 mod 13 = 2,
δ2 ≡ δ mod mk+2 = 158 mod 17 = 5.

As both δ1 and δ2 are non-zero, we assume single error in an information residue.

Step C. The various computations are

∆ ≡ (MK)–1 ⋅ δ mod MR = 140 ⋅ 158 mod 221 = 20.

i = 1

 e1,1 ≡ m1 ⋅ ∆ mod MR = 7 ⋅ 20 mod 221 = 140,
 e2,1 = MR – e1,1 = 221 – 140 = 81.

i = 2

e1,2 ≡ m2 ⋅ ∆ mod MR = 9 ⋅ 20 mod 221 = 180,
 e2,2 = MR – e1,2 = 221 – 180 = 41.

i = 3

e1,3 ≡ m3 ⋅ ∆ mod MR = 11 ⋅ 20 mod 221 = 220,
e2,3 = MR – e1,3 = 221 – 220 = 1.

Since 0 < e2,3 < m3, an error is declared in 3rd residue, the error value being

e3 ≡ m3 – (t3)
–1 ⋅ e2,3 mod m3 ≡ m3 – [(MK/m3) mod m3] ⋅ e2,3 mod m3

= 11 – 8 ⋅ 1 mod 11 = 3.

Step D. The error correction in 3rd residue is carried out as

x3 ≡ (y3 – e3) mod m3 = (1 – 3) mod 11 = 9.

This completes our analysis of syndrome based minimum distance 3 SEC algorithms in RRNS.

3.2 Algorithms for SEC-MED in RRNS

For SEC-MED algorithms, we need to determine the location and value of single errors and simultaneously
carry out MED. In the following, we describe a SEC-MED algorithm for RRNS. If no errors are present,
then δ = 0.

Garg; BJMCS, 11(5): 1-18, 2015; Article no.BJMCS.19903

11

If only a single error occurs in the i-th parity residue, i = k + 1, ..., n, then

EP = Ei = [(ei ⋅ si) mod mi] ⋅ (MR / mi), (35)

EI = 0, a = 0, RP MEδ mod−≡ . (36)

Integers si are CRT reconstruction integers used in computation of an integer from its residues defined by
moduli (mk+1 ... mn) over [0, MR). It is clear from (35) that

ei ≡ –δ mod mi,

ej ≡ δ mod mj = 0, j = k + 1, ..., i – 1, i + 1, ... n. (37)

An alternative way to express write (37) is

Ei ≡ δ mod (MR / mi) = 0. (38)

If only a single error occurs in the i-th information residue, i = 1, 2, ..., k, then

EI = Ei = (ei ⋅ ti) mod mi ⋅ (MK /mi) =

⋅′

i

K
i m

M
e , (39)

EP = 0, (40)

() RKi MMaEδ mod⋅−≡ RK
i

K
i MMa

m

M
e mod

⋅−

⋅′= . (41)

Based on (39)-(41), an algorithm for computing the error location and value in information residues is
derived as follows. Compute:

∆ ≡ () RiiRK MameMδM modmod 11 −′≡⋅ −− . (42)

For j = 1, 2, ..., k, assume error in j-th residue and compute

∆j ≡ mj ⋅ ∆ mod MR () Rjjii Mmamme mod1 ⋅−⋅′≡ − . (43)

When j = i,

∆i ≡ () Rii Mmae mod⋅−′ . (44)

Two cases arise due to residual effect, a = 0 resulting in

0,ie′ ≡ ∆i mod MR = ie′ (45)

or a = 1, resulting in (ie′ – mi) ≡ ∆i mod MR. Rearranging,

1,ie′ = mi – ie′ ≡ –∆i mod MR = MR – ∆i = MR – 0,ie′ (46)

for a = 1. In all other cases when j ≠ i, (43) holds.

Garg; BJMCS, 11(5): 1-18, 2015; Article no.BJMCS.19903

12

It is clear that one of the two values in (45) or (46) belongs to the range (0, mi). We further note that if 0 ≤ ∆i
mod MR < mi or –mi < ∆i mod MR < 0 then ∆i mod mk+l = ∆i mod MR, l = 1, 2, ..., n – k. This is seen via
observations 1 and 2. Expressions in (44)-(46) become our test for identifying i, location of the error, and ei,
value of the error. We claim that the solutions to (43) for a = 0 or a = 1 do not satisfy the conditions 0 < 0,je′

< mj or 0 < 1,je′ < mj for j ≠ i. This claim can be proven in a straightforward manner. The framework for

SEC-MED in RRNS is complete. The algorithm can be described as follows.

Algorithm for SEC-MED in RRNS (single syndrome based)

Input: Received residues y = (y1 … yn).

Output: Corrected residues if up to 1 error occurs; Errors detected if up to d – 2 errors occur.

Step 1. Compute syndrome value δ in (22).

Step 2. Error Computation

A. No Error. If δ = 0, then declare “no error occurred.” STOP.

 B1. Error in parity residue: Approach 1. For j = k + 1, ..., n, compute

δj ≡ δ mod mj.

If exactly one of δj ≠ 0, then declare “1 error in parity residue.” Say, for j = i, δi ≠ 0 then i-th parity residue
is in error, ei = –δi mod mi. Next, go to E.

B2. Error in parity residue: Approach 2. For j = k + 1, ..., n, compute

δj ≡ δ mod (MR / mj).

If δj = 0, then declare “1 error in parity residue.” Say, for j = i, δi = 0 then i-th parity residue is in error, ei = –
δ mod mi. Next, go to E.

 C. Error in information residue. Compute

∆ ≡ RK MδM mod1 ⋅− .

For j = 1, 2, ..., k, compute

 ej,0 ≡ mj ⋅ ∆ mod MR,

ej,1 = MR – ej,0.

If either one of ej,0 or ej,1 ∈ (0, mj) then declare the j-th residue to be in error,

where

ej ≡ (tj)
–1 ⋅ ej,0 mod mj,

if 0 < ej,0 < mj, and

ej ≡ mj – (tj)
–1 ⋅ ej,1 mod mj,

if 0 < ej,1 < mj. Next, go to E.

Garg; BJMCS, 11(5): 1-18, 2015; Article no.BJMCS.19903

13

D. Multiple error detection. Declare “more than 1 error detected.” STOP.

E. Single residue correction. For i-th residue in error, i ∈ (1 2 … n), error correction is carried out as

 xi ≡ (yi – ei) mod mi.

F. End

Two equivalent approaches to carry out the computation in step B ‘Error in parity residue’ are given. Either
one may be used.

We note that the above described single syndrome based algorithm for SEC-MED in RRNS is
computationally equivalent to the multiple syndrome based algorithm for SEC-MED in [1]. Hence the
conditions for the validity of the above algorithm are identical to those in [1]. Though the necessary and
sufficient conditions are quite cumbersome, the sufficient condition is not. It is same as the sufficient
condition in (34).

Example 7. Consider a (10, 6) RRNS defined by (m1 m2 ... m10) = (23 25 27 29 31 32 67 71 73 79) with d =
5, α = 1, and β = 3. Clearly m7 ⋅ m8 = 4,757 > 2 ⋅ m6 ⋅ m5 – m6 – m5 = 1,921, and therefore the sufficient

condition in (34) is satisfied. ∏
=

=
6

1i

iK mM = 446,623,200 and ∏
=

=
10

7i

iR mM = 27,433,619. Let X =

400,000,000, then x = (8 0 22 13 25 0 17 58 4 11). Assume that one error takes place in the first residue, and
the received vector is y = (0 0 22 13 25 0 17 58 4 11). Based on the information part (0 0 22 13 25 0) and
parity part (17 58 4 11),

Step 1. Syndrome is computed as

δ ≡ (Y
~

 mod MR – YR) mod MR

 = (225,234,400 mod 27,433,619 – 15,929,334) mod 27,433,619

 = 17,269,733.

Step 2. Error computation

A. δ ≠ 0. At least error has occurred.

B1. Error in parity residue: Approach 1. Compute δj ≡ δ mod mj, j = 7, ..., 10,

δ7 ≡ δ mod m7 = 17,269,733 mod 67 = 14

δ8 ≡ δ mod m8 = 17,269,733 mod 71 = 48

δ9 ≡ δ mod m9 = 17,269,733 mod 73 = 50

δ10 ≡ δ mod m10 = 17,269,733 mod 79 = 17

Since more than one of δj, j = 7, ..., 10, is non-zero, we go to next step.

Garg; BJMCS, 11(5): 1-18, 2015; Article no.BJMCS.19903

14

B2. Error in parity residue: Approach 2. Compute δj ≡ δ mod (MR / mj), j = 7, ..., 10,

δ7 ≡ 17,269,733 mod 409,457 = 72,539

δ8 ≡ 17,269,733 mod 386,389 = 268,617

 δ9 ≡ 17,269,733 mod 375,803 = 358,598

 δ10 ≡ 17,269,733 mod 347,261 = 253,944.

Since none of δj = 0, we go to next step.

C. Error in information residue. Compute ∆ ≡ RK MδM mod1 ⋅−

∆ ≡ 5,014,626 ⋅ 17,269,733 mod 27,433,619 = 10,734,894.

j = 1

e1,0 ≡ m1 ⋅ ∆ mod MR = 23 ⋅ 10,734,894 mod 27,433,619 = 27,433,610.

e1,1 = MR – e1,0 = 9.

Since 0 < e1,1 < m1, an error is declared in 1st information residue with

e1 ≡ m1 – (t1)
–1 ⋅ e1,1 mod m1 = 23 – [(MK / m1) mod m1] ⋅ e1,1 mod m1

 = 23 – 6 ⋅ 9 mod 23 = 15.

Next, go to E.

E. Single residue correction. For the 1st residue in error, error correction is performed as

 x1 ≡ (y1 – e1) mod m1 = (0 – 15) mod 23 = 8.

Now assume that two errors take place in the first and third residue digit and the received vector is y = (0 0
23 13 25 0 17 58 4 11). Based on the information part (0 0 23 13 25 0) and the parity part (17 58 4 11) we
compute the syndrome as

 δ ≡ (Y

~
 mod MR – YR) mod MR

 = (109,443,200 mod 27,433,619 – 15,929,334) mod 27,433,619

 = 11,213,009.

Following the decoding algorithm, we check the consistency for j = 1, ..., 6, and find that there is no
consistent solution. Therefore, more than one error is detected.

4 Superfast Algorithm for SEC-MED in RRNS

In this section, we deal with SEC-SA, a superfast algorithm for SEC-MED RRNS. This is a generalization of
the minimum distance 3 SEC-SA described in [14]. SEC-SA is based on the CRT reconstruction expression
in (14). It is restated again as it is extensively utilized in this section.

Garg; BJMCS, 11(5): 1-18, 2015; Article no.BJMCS.19903

15

Kx

k

i i

K
ii M

m

M
txX ⋅−

⋅⋅≡∑

=

θ
1

, 0 ≤ θx < k. (47)

There is further uncertainty here due to unknown θx in (47). To counter it, we introduce an additional
redundant moduli mn+1 to create an (n + 1, k) RRNS from the original (n, k) RRNS such that

mn+1 > k. (48)

The (n + 1, k) RRNS will still be treated as a minimum distance d = n – k + 1 code, where moduli mn+1 is
used exclusively to manage the uncertainty in (47).

Consider a residue vector y = (y1 … yk yk+1 … yn yn+1) for a codeword x. According to y, we may compute Y
~

as

Ky

k

i i

K
ii M

m

M
tyY ⋅−

⋅⋅≡∑

=

θ
1

~
, 0 ≤ θy < k (49)

and proceed as before. The SEC-SA is based on the expression for Ŷ defined as follows,

∑
=

⋅⋅≡

k

i i

K
ii m

M
tyY

1

ˆ . (50)

It is clear from (49) that

Ky MYY ⋅+≡ θ~ˆ . (51)

The first step then in the SEC-SA is to compute a quantity D:

D ≡ (Ŷ – YR) mod MR ≡ (Ŷ mod MR – YR) mod MR. (52)

Here YR is the integer obtained by combining the parity residues yl, l = k + 1, …, n + 1. It was used earlier in
(22) also. It is possible to avoid large integer arithmetic by computing Ŷ mod MR directly rather than
computing Ŷ first and then taking mod MR. The modified syndrome to be used in SEC-SA is then defined as

RK MDM mod1⋅≡ −δ . (53)

Substituting for Ŷ from (51), Y

~
 from (27) and D from (52) into (53), we get

() ()[] RyPIK MaEEM mod1 −+−≡ − θδ . (54)

As before, three cases follow.

Case 1. No error in y. In this case, EI = EP = a = 0 and

yRy M θθδ =≡ mod , 0 ≤ yθ < k. (55)

Garg; BJMCS, 11(5): 1-18, 2015; Article no.BJMCS.19903

16

Case 2. An error in information part in y. Let i-th information residue be in error. In this case, EI is same as
in (39), EP = 0, and

()[] Ryii Mame mod1 −+⋅′= − θδ , –1 ≤ yθ – a < k. (56)

Thus,

()[] Ryiii Mamem mod−⋅+′=⋅ θδ , –1 ≤ θy – a < k. (57)

Finally, (57) leads to –mi < mi ⋅ δ < k ⋅ mi. Since we process only positive integers in modulo arithmetic, we
may write, 0 ≤ mi ⋅ δ < k ⋅ mi or MR – mi < mi ⋅ δ < MR.

Case 3. An error in parity part in y. In this case, EI = a = 0 and

[] RyPK MEM mod1 θδ +⋅−≡ − , 0 ≤ yθ < k. (58)

Another way to express (58) for an error in the i-th parity residue, i = k + 1, …, n + 1, is

iKyi mMe mod1 δθ ⋅−≡ − , (59)

ej ≡ δ mod mj = θy, j = k + 1, ..., i – 1, i + 1, ... n. (60)

We may also write (58) as

δi ≡ δ mod (MR / mi) = θy. (61)

Based on the above analysis of error events, a complete SEC-SA for RRNS can now be described as follows:

Algorithm for SEC-SA for SEC-MED in RRNS (single syndrome based)

Input: Received residues y = (y1 … yn yn+1).

Output: Corrected residues if up to 1 error occurs; Errors detected if up to d – 2 errors occur.

Step 1. Compute the quantity D in (52) and syndrome value δ in (53).

Step 2. Error Computation

A. No Error. If 0 ≤ δ < k, then declare “no error occurred.” STOP.

B. Error in parity residue: Approach 1. For l = k + 1, ..., n + 1, compute

δl ≡ δ mod (M / ml).

If exactly one of 0 ≤ δl < k, then declare “1 error in parity residue.” Say, for l = i, 0 ≤ δi < k then i-th parity

residue is in error, θy = δi and iKyi mMe mod1 δθ ⋅−≡ − . Next, go to E.

Garg; BJMCS, 11(5): 1-18, 2015; Article no.BJMCS.19903

17

C. Error in information residue.

For j = 1, 2, ..., k, compute
ej,0 ≡ mj ⋅ δ mod MR,
ej,1 = MR – ej,0.

If either 0 < ej,0 < k ⋅ mj or 0 < ej,1 < mj then declare the j-th residue in error,

Where

ej ≡ (tj)

–1 ⋅ ej,0 mod mj,

if 0 < ej,0 < k ⋅ mj, and

ej ≡ mj – (ti)

–1 ⋅ ej,1 mod mj,

if 0 < ej,1 < mj. Next, go to E.

D. Multiple error detection. Declare “more than 1 error detected.” STOP.

E. Single residue correction. For i-th residue in error, i ∈ (1 2 … n + 1), error correction is carried out

as

xi ≡ (yi – ei) mod mi.

F. END.

The above SEC-SA has been described for RRNS. A similar SEC-SA can be also described for RNS-PC.
We end this section by stating that the SEC-MED and SEC-SA algorithms described here are computational
in nature. It is straightforward to describe an equivalent implementation that is based on a table look-up once
the syndrome value is computed in step 1 of the decoding algorithms.

5 Conclusion

In this work, we have described mathematical construction and algorithms associated with syndrome based
single error correcting codes for RRNS. All such algorithms are described within the framework of a single
syndrome used for error correction as well as simultaneous error detection. Examples are also provided to
illustrate the various features and procedures associated with the various algorithms. Finally, a superfast
algorithm is described that simplifies computations at the expense of an additional moduli.

Competing Interests

Author has declared that no competing interests exist.

References

[1] Krishna H, Krishna B, Lin KY, Sun JD. Computational number theory and digital signal processing:

Fast algorithms and error control techniques. CRC Press, Boca Raton, USA; 1994.

Garg; BJMCS, 11(5): 1-18, 2015; Article no.BJMCS.19903

18

[2] Sengupta A, Natarajan B. Performance of systematic RRNS based space-time block codes with
probability-aware adaptive demapping. IEEE Transactions on Wireless Communications. 2013;
12(5):2458-2469.

[3] Zhang S, Zhang Y, Yang LL. Redundant residue number system based multicarrier DS-CDMA for

dynamic multiple-access in cognitive radios. IEEE Vehicular Technology Conference, Japan. 2011;
1–5.

[4] Sengupta A, Zhu D, Natarajan B. On the performance of redundant residue number system codes

assisted STBC design. International Conference on Computing, Networking and Communications
(ICNC) 2012, Wireless Communications Symposium. 2012;1051-1055.

[5] Haron NZ, Hamdioui S. Using RRNS codes for cluster faults tolerance in hybrid memories. 24th IEEE

International Symposium on Defect and Fault Tolerance in VLSI Systems, USA. 2009;86-93.

[6] Tay TF, Chang CH. A new algorithm for single residue digit error correction in redundant residue

number system. IEEE International Symposium on Circuits and Systems (ISCAS), Australia. 2014;
1748-1751.

[7] Mandelbaum DM. On a class of arithmetic codes and a decoding algorithm. IEEE Transactions on

Information Theory. 1976;IT-22:85-88.

[8] Soderstrand MA, Jenkins WK, Julien GA, Taylor FJ. Modern applications of residue number system

arithmetic to digital signal processing. New York, IEEE Press; 1986.

[9] Shenoy AP, Kumaresan R. Fast base extension using a redundant modulus in RNS. IEEE

Transactions on Computers. 1989;C-38:292-297.

[10] Mandelbaum DM. An approach to an arithmetic analog of Berlekamp’s algorithm. IEEE Transactions

on Information Theory. 1984;IT-30:758-762.

[11] Jenkins WK, Altman EJ. Self-checking properties of residue number error checkers based on mixed

radix conversion. IEEE Transactions on Circuits & Systems. 1988;35:159-167.

[12] Krishna H, Lin KY, Sun JD. A coding theory approach to error control in redundant residue number

systems. Part I: Theory and Single Error Correction, IEEE Transactions on Circuits & Systems. 1992;
39:8-17.

[13] Blass A, Dershowitz N, Gurevich Y. When are two algorithms the same? arXiv.org; 2008.

[14] Sun JD, Krishna H, Lin KY. A superfast algorithm for single error correction in RRNS and hardware

implementation. Journal of VLSI Signal Processing. 1993;6:259-269.

© 2015 Garg; This is an Open Access article distributed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided
the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here (Please copy paste the total link in your
browser address bar)
http://sciencedomain.org/review-history/11333

