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Abstract

Error control via residue number systems continues ttacatresearchers’ attention as evidenced by
recent publications dealing with their applications in digtommunications and computing. In this
paper, we present syndrome based decoding algorithms alydeatteeir algebraic structure for single
error correction in such systems. The mathematicaddveork is also extended to single error correction
and simultaneous multiple error detection. We also mésglue number system product codes under the
same framework. Specifically, all the algorithms are dase the computation of a single syndrome
value. Computational aspects are also studied along withtworgdifor the validity of the syndrome
based algorithmic approach being described here. Numerougplkesaare given to illustrate the structuye,
properties, and decoding procedures associated with the algorithms

Keywords: Computer arithmetic; Chinese remainder theorenTjCRsidue number systems (RNS); error
control; redundant residue number systems (RRNS); singbe eorrection (SEC); multiple
error detection (MED).

Abbreviations

CRT : Chinese remainder theorem,

RNS : Residue number systems,

RRNS : Redundant residue number systems,
RNS-PC: Residue Number System-Product Code,
SBEC : Syndrome based error control,

SEC : Single error correction,
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MED Multiple error detection,

BE : Base extension,

MRC Mixed radix conversion,

MDS : Maximum Distance Separable,
SA : Superfast Algorithm.

1 Introduction

One of the most popular ways to perform error control igséesn, be it a communication or a computing
system, is to use an appropriate amount of redundancy. Thyss the original information, it is encoded

into a codewordx such that certain most commonly occurring errorscitan be corrected. Most

phenomenon that introduce errors are modelled as additive ire nttar is

y:)(+e, (1)

Giveny, the first step in many syndrome-based error con8BIEC) algorithms is to compute syndrome
that depends only on the erer

s=9(y) =S(x +€) =S(x) + S(€) = S(e). )

The second step, is to estimat&éom the syndromea. This can be done via a computational algorithm or a
table look-up method. Thus

e =T(9. (3)
Finally, we assume,

y=X + @ (4)
to decodey to

X =y—é. (5)

Equivalence between a computational algorithm and table looketipoeh to carry out the task in (3) is well
known in classical coding theory. It is possible to tmemethod described above to compute more than one
possible candidate fog in (3) and hence fok in (5). Suchx candidates can then be tested for their

validity as a codeword. In our work, we restrict our attemtd a single pass where the er@oas computed
in (3) is unique. Also other methods for decoding, such asr‘@apping,’ will also not be studied here.

The above described methodology has also been applied tocemool in Chinese remainder theorem
(CRT) based residue number systems (RNS) [1]. With rezhoydbuilt in for error control, such RNS are
termed redundant RNS or RRNS. RRNS continue to attesetarchers’ attention as evidenced by recent
publications dealing with their applications to digital conmiation and computing systems. The reader is
referred to [2-5] for such applications. In additionrRBNS, RNS product codes (RNS-PC) also present an
attractive alternative to RRNS for error control in RNB®th RRNS and RNS-PC will be pursued in this
work. When applied to RRNS and RNS-PC, SBEC methods havadditional feature, termed residual
effect, to be taken into consideration. The syndronme(8)i may not depend exclusively enbut also orx.

As we will establish in this paper, the impact of residéfalot depends on algebraic structure of the method
used for error control.

In this work, we derive new computational algorithms fogkdrerror correction§EC) and its extensions to
simultaneous multiple error detectioklED) in RRNS and RNS-PC. A rigorous analysis of the residual
effect is also carried out. Computational aspects acesalslied along with conditions for the validity of the
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syndrome based algorithmic approach adopted. Numerous esaamgl given to illustrate the structure of
these algorithms. The key idea of the paper is to ugagée syndrome value to carry out the computations
required for the task at hand. The approach to use ke sipgdrome was first described in a recent paper [6]
that the current author finds very interesting.

The contributions of this work are two folds. First, masf the existing algorithms for error control in
RRNS that utilize multiple syndromes are now reformulated thattthey utilize a single syndrome value in
a computationally equivalent manner. Collectively, such alyms for SEC and their extensions for
simultaneous MED are called SEC. Second, a new syndrerdefined that can be computed using a
superfast algorithmSA) to further simplify the computations involved in error controRRNS and RNS-
PC. This second class of SA for SEC using a single symelivalue is terme8EC-SA The focus in this
work is on SEC and SEC-SA for RRNS and RNS-PC.

The organization of this paper is as follows. In sectipthe basic framework for RRNS and RNS-PC for
error control is presented. Syndrome is defined as aesingglger value to be used for determining all single
error events. Section Il describes residual effectadeubding algorithms for SEC and SEC-MED RRNS. A
superfast approach for the computation of syndrome and thesponding SEC-MED algorithm for RRNS
is described in section 1V. Conclusions are presented iroge¢ti

It is worthwhile to mention here that we are driven dymputational complexity considerations all
throughout this work. However we refrain from making stateméntplying that the computational
complexity is the only measure of the overall performasfan algorithm. Further, the need to process large
valued integers is avoided in the design of error contgaridhms. Instances of such methods that use large
valued integers include modulus projection method amongynothers. Readers may find the research
results reported in [7-10] interesting and relevant.

2 Error Control in RRNS & RNS-PC

RNS. A RNS is a finite integer ring(My) defined byk relatively co-prime moduling, m, ..., my, arranged
in ascending order without any loss of generality. The rafigiee RNS is given by [0My) where

MK:I—lmi' (6)

An integerX O [0, M) in the given RNS is represented as a lekgtlctorx via the modulo computations,

X o X= (X X ... X, (7)
where

X; = X modulom,i=1, 2, ...k (8)
We assume that all residues are positive. Thusx0<m, i = 1, 2, ... k. Modulo will be written as ‘mod’

from here on. Negative integers are converted to equivpdmitive values. Thus{=-amodm=m-a, 0

< a < m Two observations associated with RNS that play a keyinotee decoding algorithms are as
follows.

Observation 1. If all residues are equal, Xay x=(aa...a), 0<a<m, thenX=a.

Observation 2. If all residues are equal, Xay x=(-a-a... -a), 0 <a<my, thenX = a.
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Chinese remainder theorem (CRT).Given x, computation ofX, 0 < X < M, is done via the CRT
reconstruction, stated as

k M
X =Y x 0O EE—K] modM  , 9)
= m

wheret; is computed a-priori by solving the congruence
M K | = -
t; W =lmodm,i=1,2, ..k (20)

It is clear from (10) that

gedg, m)=1,i=1,2, ...k (11)
The CRT computation in (9) can be performed in steaps:
Step 1: Compute the permuted residues

X =x [t modm ,i=1,2, ..k (12)

Step 2: ComputX as

k
X=Yx [E%J modM . (13)

Computation ofX from x involves large integers when the dynamic rangBNE is large. Another way to
express CRT reconstruction Xfin (9) is as follows:

X = y x; O EﬁﬂJ -6,M . (14)
i1 m

The ‘modMy’ computation in (9) is performed in (14) as a sattion by a multiple oM such that & X <
Mk. We note that, is unknown and needs to be determined from thduesx.

RRNS. RRNS is obtained by appending € k) additional relatively co-prime moduliy,s, ..., m, to the

RNS defined by moduling, m, ... m). We further assume that the moduti, (M, ... Mg Mgy ... M) are
arranged in an ascending order. The RRNS 55 lg €ode. The redundancy of the RRNS is given by

Mg = m; . (15)
i=k+1

An integer X O [0, M) in the given RNS is represented as a lengtbodewordx via the modulo
computations,

X o X = (X1 X2 oo X Xict1 -+ Xn), (16)
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where
X =X modulom,i=1, 2, ...n. a7

Thek residuesx; x; ... X constitute the information part amil< k) residuesX; ... X,) the parity/redundant
part. Let

MN = MK D\AR. (18)
The RRNS as defined here is a maximum distanceaepaMDS) code having minimum distance

d=n-k+ 1. (19)
Minimum distance is the smallest Hamming distanesvben two distinct codewords. It also turns oubdo
the Hamming weight of a non-zero codeword with sheallest Hamming weight [1]. In general, a RRNS
that can simultaneously corregtand deteci3 (8 > a) residue errors had=a + f+ 1. A SEC RRNS is
obtained by settingl = 3, a = 1. For SEC-MED (multiple error detecting) RRN&= 1,3 =d — 2. For
example, a minimum distance 4 RRNS can simultarigaosrect 1 and detect 2 residues in error. .
Example 1.Consider a (4, 2) RRNS defined by (m, ms my) = (11 13 14 15). The legitimate range is [0,
143),Mg = 210. This is a SEC. Given the integer 250 [0, 143), we have = (3 12 11 10). If we extend
this RRNS with a third redundant moduli, say = 17, we get a (5, 2) SEC-DED (double error datggt
RRNS.
An errore (g # 0) in thei-th residue leads to the received residue vegtor

y=X+eg, (20)
where,

yi=(x +&) modm,i=1,2, .0 (21)

For an error, both its locationsuch thag # 0, and valueg # 0, are unknown.

Syndrome. Given the residuey, = (1 Y ... Yk Yie1 - o), let Y 0 [0, M) andYg O [0, Mg) represent two
integers for the information residueg ¥. ... yi) and the parity residueg.; ... yn), respectively. They may
be computed using CRT reconstruction or using sotiner method such as mixed radix conversMRC).
For RRNS the syndrome is an inte@arxith value in the range [0/g). It is defined as,

0= (Y —YR modMg= (Y modMg—Yg) modMg. (22)
Given the residue vectgr the first step in decoding algorithms for RRNSysdrome computation in (22).
RNS-PC. For notational consistency, RNS-PC is definedbgoduli (m m, ... m,) such that all codewords

when converted to equivalent integer form are ibilésby a code-generator integerwhere A, m) = 1,j =
1,2, ...n

MN:|jm- (23)

Thus, all integerX in the legitimate range [@My/ Al) are first multiplied byA and then converted to a
codewordx such that
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AX o X = (X X2 oo %), (24)
where

X, =X modulom,i=1,2,..n (25)
Here, My/ Al is the well-known floor function.

Syndrome. Given the received residugs,= (y: ¥» ... y»), let Y O [0, My) represent the integer for the
residue vectoy. For RNS-PC the syndrome is an integevith value in the range [@). It is defined as,

0= Y modA. (26)
Given the residues, the first step in decodingritlyms for RNS-PC is syndrome computation in (26).

It is clear from the above description that if there no errors, then=y for either of RRNS or RNS-PC
andd= 0in (22) for RRNS and in (26) for RNS-PC. Ferththough the use of a single syndrome for error
control is rather new in RRNS [6], the error cohtiechniques for RNS-PC have always used a single
syndrome. Single syndrome based approach to eamtrat for RNS provides a unified framework for
algorithm design for seemingly different methodaodesg We assume existence of a computational teganiq

to compute? andYg as defined and hencen (22) and (26). There exists a significant bofl\iterature on
this topic. We refer the readers to [11] for a bagension (BE) method using MRC.

3 SEC Algorithms in RRNS

In this section, we deal with SEC RRNS. We beginanalysis with the effect of information residuas
the syndrome manifested via a phenomenon termeidltral effect’.

Residual effect. We observe that the information and parity ressdaie treated differently in RRNS while

all residues are treated in an identical mann&N$-PC. Based on (21), if there are one or mormer®in
the information residues, we have

Y =(X+E)modMy =X +E, —a [M. (27)

E, has residues( ... g). Here eithema = 0 if X + E, < Mg ora= 1 if X + E, > M. Similarly, if there are one
or more errors in the parity residues, we have

YRE(X+EP) mOdMRZXmOdMR+Ep—b Mg. (28)

Er has residuesg(;; ... €,). Here eithebh = 0 if X modMgr + Ep < Mg orb = 1 if X mod Mg + Ep > Mg.
SubstitutingY in (27) andYy in (28) into (22) we get

0= [(X +E -alM K)modMR —(X modM g + Ep —bM R)]modM R
=(E, -Ep—alM )modM . (29)
It is seen from (29) that for the syndrome as dated in (22) for RRNSiesidual effectof X is present in
the syndrome via the unknown valw@. This value gives rise to its own constraints. Wate that RNS-PC
has the residual effect only due to (27). Thus,

s=(AIX +E-alMy)modA = (E—a[My) modA (30)
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for RNS-PC. Againresidual effectof X is present via the unknown value &f.‘ In the remainder of this
section, we describe SEC algorithms for RRNS.

3.1 Minimum Distance 3 RRNS

In this sub-section, we deal with minimum distaBd@RNS withn =k + 2. The two known SEC algorithms
that we compare in this work are available in [a8} [6]. We show them to be computationally eq&ral
Hence it is reasoned that the conditions for theilidity are also identical. Further a computationa
algorithm is described for SEC based on a singiemme.

Algorithm 1 [12]
Given the residuesy = (y1 V> ... Yk Yie1 Yie2), let Y O [0, M) represent the integer for the information

residuesy; - ... Yi). For the SEC decoding algorithm of [12], stefs 5yndrome computation. It computes
two values (egn 7.3.1 [1]),

3=(Y —Yi1) ModMs = (Y modMmys —Yies) mod i (31)

3= (Y —Yio) ModMa; = (Y modmmys —Yies) Mod M. (32)

In step 2, error correction is performed as a cdatmnal procedure. I8 = & = 0,y is error-free. If only
one of @ &) is 0, the corresponding parity digit is assumedd¢ in error and corrected. If both the
syndromes are non-zero, then an error is assumethimformation residue and value of error resiitie
computed if the assumption is found to be vali 1, 2, ...k

Algorithm 2 [6]

The step 1 of this algorithm computes the syndraméefined in (22). It is clear that (29) also kol@hus,
for the syndrome in (22) or (29), residual effekXds present via the unknown value af in (29). In step
2, error correction is performed via a table logk-u

Algorithm 1 avoids processing large valued intedsrsising BE and MRC techniques for computé@nd

& in (31) and (32), while Algorithm 2 uses CRT tosficomputeY andYg before carrying out motig

operation in (22). We emphasize that the aboveritestalgorithms compute essentially the same dfiest
though they follow different computational approashin that regard, they are equivalent. We obstrate
the phrases ‘computational equivalence’ or ‘aldgwnitequivalence’ are known in Computer Science [13].

Theorem 1. The first steps of algorithms 1 and 2 are equivtalen

Proof. With Mg as defined in (15), CRT establishes equivalendevdsn residues) and &, expressed
modulomy,; andm. in (31) and (32), respectively, and the residumoduloMy in (22). It is seen that) =
Jomodmy; andd, = omod M.

Example 2. For the example in [6], the (5, 3) RRNS is givwnmoduli (7 9 11 13 17Mg = 221. Lety =
(55 9 8 8). As per the computation in [§], = 383,Ys = 8 andd= (Y —Yg) modMg = (383 — 8) mod 221
= 154. As per Algorithm 1 = (Y mod M1 — Yie1) Modme; = (6 — 8) mod 13 = 11 = (Y mod M., —
Ykr2) Modm, = (9 — 8) mod 17 = 1. The equivalence is seed asll= dmod 13 = 154 mod 13 = 11 and
b=1=0mod 17 = 154 mod 17 = 1.

Given the equivalence of step 1 of two algorithme,now examine conditions for the validity of thsiep
2. Step 2 of both algorithms provides the sameudutpalized via computations in [12] and tablekiop in
[6]. Since the inputs to the step 2 of both aldwnis are equivalent, it is imperative that the ctons for
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effectively countering residual effect in one algun must apply to the other. Therefore in additiorthe
redundancy constraiMlr = m.; Om.,, the necessary and sufficient conditions for algors 1 and 2 to
provide a correct solution can be stated as follows

Theorem 2. If the information modulm andm are such that there do not exist integgrandn;, 0 <n; <
m, 0 <n; <m that satisfy

niﬂq+nj[m:m(+1Em<+2,i,j=l, 2, ,k, (33)

then solutions in step 2 of algorithms 1 and 2@meect under the assumption that at most one éasr
occurred.

Note that this is same as Theorem 8.1 in [1, p $&ited for Algorithm 1. The condition

ka+1Em<+2>ZD’ﬂD”f]—m—n] (34)

is a sufficient condition to (33) obtained from Y38/ replacing integers; andn; by their maximum values
m — 1 andm — 1, respectively. It may also be used to eling@rtabse pairs of information moduli andm
that need not be tested for (33). In our work, weehfound many cases of RRNS that satisfy (33)elkas
those that don't. Some of them will be mentionedhie following. We note that the RRNS in example 2
(taken from [6]) satisfies the sufficient conditiam (34). Further, contrary to what is stated if, [@e
reassert that for the step 2 of Algorithm 2 to bédy conditions in (33) or (34) must be satisfiethere is
an oversight in the analysis of case 1 of theorém[8]. The correct expression that must have hessd is

E, =a M /m instead ofE; =a, M Mg/m; .

Example 3. Consider the (4, 2) RRNS in example 1. Heweln, = 143 <ms Oy = 210 < 200y T, —my
—m, = 262. Further, 12y + 6 [, = 132 + 78 3mz [y = 210. Thus the condition for a unique association
between the syndrome and the error (location ahtkya#s violated. For the codewokd= 136 -~ x = (4 6

10 1), let a single error be (0 11 0 0). Thus, (4 4 10 1). The corresponding syndrome is

0= (Y modMg—Yg) modMg = (4 mod 210 — 136) mod 210 = 78.

Similarly, for the codewor®& = 16 -« x = (5 3 2 1), let a single error be (1 0 0 0). §hu=(6 3 2 1). The
corresponding syndrome is

0= (Y modMg—Yg) modMg = (94 mod 210 — 16) mod 210 = 78.

It is not surprising that syndrom&= 78 is obtained for multiple codewords when tlaeg corrupted by
single error events (1 0 0 0) or (0 11 0 0). Sirylasyndromed = 132 is obtained for multiple codewords
when they are corrupted by either the single exvent (10 0 0 0) or (0 2 0 0). In all such cadesie exists
no unique relationship between the syndrodnand single error events. Hence neither algorithmof
algorithm 2 can be used for error correction whtbsie moduli. As per [6], Algorithm 2 can be usedS&C

in this case. This is erroneous.

Example 4.Consider the (8, 6) RRNS defined by the residu8s2& 27 29 31 32 37 43). Hems; [mg =
1591. We need to test the condition of Theoremr2He residue pairsrg ms) = (32 31), (ns my) = (32 29),
(ms mg) = (32 27), (s my) = (31 29), andrs ms) = (31 27) as for each of theni®n Oy —m —m > 1591.
These values are (1921 1795 1669 1738 1616). Aceualuation of the linear Diophantine equatioif38)
leads to no solution in any of the 5 cases. Thaiobtl solutions are 10 + 9 [y = 599, 1870 + 30y
=663, 5[ + 210y = 727, 2500 + 260y, = 1529, and 18 + 130y = 754. Hence this RRNS can be
decoded using either of the two algorithms.
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Example 5.Consider the (8, 6) RRNS defined by the residu8s2&27 29 31 32 41 43). Hems; (g =
1763. We need to test the condition (33) of TheoPeior the residue pairsngms) = (32 31) andrfs my) =
(32 29) as for each pair2n On —m —m > 1763. These values are 1921 and 1795. A quiakuation of
the linear Diophantine equation in (33) leads sohlution in both cases given by 2 + 29 [0ms = 864 +
899 = 1763 and 2/ + 310m, = 864 + 899 = 1763. Hence, neither of the two @dligms can be used for
decoding this RRNS. There will be several singtereevents each with syndrome values of 864 and 899
Algorithm 1 uses two syndromes in step 1 and a ctatipnal procedure for determining error
location/value in step 2. We now describe a contjmrtal procedure for step 2 of Algorithm 1 that sise
single syndrome as in (29).

Step 2 of Algorithm 1 (single syndrome basedError computation

Input: Syndrome integed.

Output: Corrected residue once erroa@de such thag # 0) is known.

A. No Error. If =0, no error is declarecSTOP.
B. Errorin parity residue. Compute

d = Odmodmy,4,
& = odmodmy,,.

If only one ofd, andd, = 0, then parity residue with non-zedpor & is in error. Ifo, # 0 then g = 4. |If
&, % 0 theng,, = —&%. Go toD.

C. Error in information residue. Compute
A = (M) modMg.
Forj=1, 2, ...k, compute

e, =m [A modMg,
&) =Mgr—gj.

If either one ofeyj or ,; O (0, m) thenj-th residue is declared to be in error,
where

& = ()" Cey; modm = [(M/ m) modm] [y ; modm,

if 0 <e;;<m, and

§=m - (§)" [ modm =m — [(Mc/ m) modm] C&,; modm,

if 0 < &; <m. Next, go taD.

D. Single residue correction.Fori-th residue in erron, 0 (1 2 ...k + 2), error correction is carried
out as

X = (y; —e) modm,.

E. End
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Scalarg;, used in CRT reconstruction &f , are obtained by solving the congruertcB(My/m) = 1 modm,
i=1,2, ..k Thus, {)™= (M/m) modm.

We illustrate this computational step with an exEmp

Example 6. This is a continuation of example 2. The (5, NS is given by moduli (7 9 11 13 1Nk =
693, Mg = 221. We need the following one-time pre-compaotet for steps 1 and 2t;(t; tz) = (1 2 7) to

computeY from residuesy( y»ys) and (4 ts) = (10 4) to comput¥x from residuesy( ys). Also, ¢, t; ™)
= (15 8) andNl) *modMg = 140. Lety = (5 4 1 8 8). In this case, = 166,Yg =8, andd= (Y —Yg) mod
Mg = (166 — 8) mod 221 = 158. A%~ 0, we proceed as follows:

Step B.

J, = odmodmy,; = 158 mod 13 = 2,
% = omodmy, = 158 mod 17 = 5.

As bothd, andd, are non-zero, we assume single error in an infoomaesidue.
Step C.The various computations are

A = (M) modMg = 1401158 mod 221 = 20.

i=1
€1 =m (A modMg = 720 mod 221 = 140,
&1=Mg—e ;=221 - 140 = 81.

=2
€1,=m, [A modMg = 920 mod 221 = 180,
&,=Mg—e;,=221 -180 =41.

i=3

€ 3= My [A modMg = 1120 mod 221 = 220,
&3=Mg—€3=221-220=1.

Since 0 <, 3 <mg, an error is declared in“3esidue, the error value being

€3 =M — (tz) " [ 3 modmg = Mg — [(My/ms) modmy] [, 3 modmy
=11 — 80 mod 11 = 3.

Step D.The error correction inBresidue is carried out as
X3 = (Y3 —€3) modnmz= (1 — 3) mod 11 = 9.
This completes our analysis of syndrome based mimirdistance 3 SEC algorithms in RRNS.

3.2 Algorithms for SEC-MED in RRNS

For SEC-MED algorithms, we need to determine tlation and value of single errors and simultangousl
carry out MED. In the following, we describe a SMED algorithm for RRNS. If no errors are present,
thend=0.

10
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If only a single error occurs in theh parity residue, =k + 1, ...,n, then
Epr = E = [(e [5) modm] {Mr/ m), (35)
E =0,a=0,6=-Ep, modM . (36)

Integerss are CRT reconstruction integers used in computatfoan integer from its residues defined by
moduli (M1 ... m,) over [0,Mg). ltis clear from (35) that

e =-Jdmodm,

g=oJmodm=0,j=k+1,..i-1i+1,..n (37)
An alternative way to express write (37) is

Ei = dmod Mg/ m) = 0. (38)

If only a single error occurs in theh information residud,= 1, 2, ...k, then
I _ o h Mg
E =E = (g (1) modm QMg /m) = ¢ W ) (39)
Er=0, (40)

o=(E -alM)modM ¢ :[e; [ﬁ'\r"rf]—amKJmodMR. (41)

Based on (39)-(41), an algorithm for computing #reor location and value in information residues is
derived as follows. Compute:

A= M D modM g E(el'mi‘l—a)modMR. (42)
Forj =1, 2, ...k, assume error ifrth residue and compute

A=m D&modMRE(e;mi'lmnj —amnj)modMR. (43)
Whenj =i,

A= (q'—a[m)modMR. (44)
Two cases arise due to residual effact,0 resulting in

g o =4 modMg = € (45)
ora=1, resulting in § —m) =A modMg. Rearranging,

g,=m—¢ =-AmodMg=Mg-A =Mg— ¢ (46)

fora=1. In all other cases whet i, (43) holds.

11
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It is clear that one of the two values in (45) 46)(belongs to the range (@). We further note that if 8 A
mod Mg < m or -m < A; modMg < 0 thenA; modm,; = A, modMg, | =1, 2, ...,n —k. This is seen via
observations 1 and 2. Expressions in (44)-(46) imecour test for identifying location of the error, ang,
value of the error. We claim that the solution$48) fora = 0 ora = 1 do not satisfy the conditions 0e§ o

<mor 0 <ej; <m forj#i. This claim can be proven in a straightforward mean The framework for
SEC-MED in RRNS is complete. The algorithm can escdbed as follows.

Algorithm for SEC-MED in RRNS (single syndrome based)

Input: Received residugs= (y; ... Yn).

Output: Corrected residues if up to 1 error occurs; Erdetected if up td — 2 errors occur.
Step 1. Compute syndrome valugin (22).

Step 2. Error Computation

A. No Error. If 0= 0, then declare “no error occurredSTOP.
B1. Error in parity residue: Approach 1.Forj =k + 1, ...,n, compute
g = omodm,.

If exactly one ofg # 0, then declare “1 error in parity residue.” Sfay,j =i, § # 0 theni-th parity residue
is in error,e = -4 modm. Next, go tcE.

B2. Error in parity residue: Approach 2. Forj =k + 1, ...,n, compute
g=omod Mg/ m).

If § =0, then declare “1 error in parity residue.” Sy j =i, 4 = 0 theni-th parity residue is in errog = —
omodm. Next, go tcE.

C. Error in information residue. Compute
A= M5 modMp.
Forj=1, 2, ...k, compute
6,0 = m (A modMg,
€1=Mr—86.
If either one ol or g, O (0, m) then declare thieth residue to be in error,

where
e = () omodm,
if 0 <go<m, and
§=m - ()" 51 modm,
if 0 <g1<m. Next, go tcE.

12
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D. Multiple error detection. Declare “more than 1 error detecte8TOP.

E. Single residue correctionFori-th residue in erroi,[J (1 2 ...n), error correction is carried out as
X% = (y; —e) modm.

F. End

Two equivalent approaches to carry out the comjmumtan step B ‘Error in parity residue’ are giveRither
one may be used.

We note that the above described single syndronmmedbalgorithm for SEC-MED in RRNS is
computationally equivalent to the multiple syndrotmesed algorithm for SEC-MED in [1]. Hence the
conditions for the validity of the above algorittame identical to those in [1]. Though the necessay
sufficient conditions are quite cumbersome, thdigaht condition is not. It is same as the su#idi
condition in (34).
Example 7. Consider a (10, 6) RRNS defined oy (M, ... myg) = (23 25 27 29 31 32 67 71 73 79) with
5 a=1, andB = 3. Clearlymy Ong= 4,757 > 20ms Omg —mg —my = 1,921, and therefore the sufficient
6 10
condition in (34) is satisfied.M, = I_l m = 446,623,200 and/ ; = |_| m = 27,433,619. LeK =
=1 1=7
400,000,000, ther= (8022 13250 17 58 4 11). Assume that orer ¢éakes place in the first residue, and
the received vector ig= (0 0 22 1325 0 17 58 4 11). Based on the inébion part (0 0 22 13 25 0) and
parity part (17 58 4 11),
Step 1.Syndrome is computed as
0= (Y modMg—Yg) modMg
= (225,234,400 mod 27,433,619 — 15,929,8%d 27,433,619
=17,269,733.

Step 2.Error computation

A. J#0. At least error has occurred.

B1. Error in parity residue: Approach 1. Computed = dmodm, j =7, ..., 10,

o =0 modm; = 17,269,733 mod 67 = 14

& =0modmg =17,269,733 mod 71 = 48

& =0modmy = 17,269,733 mod 73 =50

O0= 0 modmy, = 17,269,733 mod 79 = 17

Since more than one &, j = 7, ..., 10, is non-zero, we go to next step.

13
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B2. Error in parity residue: Approach 2. Computed = dmod Mg/m),j =7, ..., 10,
& =17,269,733 mod 409,457 = 72,539
& = 17,269,733 mod 386,389 = 268,617
& =17,269,733 mod 375,803 = 358,598
A0 = 17,269,733 mod 347,261 = 253,944,
Since none of) = 0, we go to next step.

C. Error in information residue. ComputeA= M " [§ modM

A =5,014,62617,269,733 mod 27,433,619 = 10,734,894,
i=1
€10= my (A modMg = 23[110,734,894 mod 27,433,619 = 27,433,610.
€1=Mr—€,=9.
Since 0 <e;; <my, an error is declared iri'Information residue with

e =my — ()" s modmy = 23 — [/ my) modmy] Ce; ; modmy
= 23— 600 mod 23 = 15.

Next, go toE.
E. Single residue correctionFor the ' residue in error, error correction is performed as
X1 = (y1 —€1) modmy = (0 — 15) mod 23 = 8.
Now assume that two errors take place in the dingt third residue digit and the received vector #s(0 0

231325017 58 4 11). Based on the informatiam (@ 0 23 13 25 0) and the parity part (17 583 e
compute the syndrome as

0= (Y modMg —Yg) modMg
= (109,443,200 mod 27,433,619 — 15,929,334) #75d33,619

=11,213,009.

Following the decoding algorithm, we check the dstesicy forj = 1, ..., 6, and find that there is no
consistent solution. Therefore, more than one ésrdetected.

4 Superfast Algorithm for SEC-MED in RRNS

In this section, we deal with SEC-SA, a superfggarithm for SEC-MED RRNS. This is a generalizatiafn
the minimum distance 3 SEC-SA described in [14]CSEA is based on the CRT reconstruction expression
in (14). It is restated again as it is extensivelilized in this section.
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[3
X=Y %0 EE%J -6,M,0< @ <k (47)
— |

There is further uncertainty here due to unknofrin (47). To counter it, we introduce an additional
redundant modulin,.; to create ann(+ 1,k) RRNS from the originaln{ k) RRNS such that

Mo >k (48)

The ( + 1,k) RRNS will still be treated as a minimum distarkce n —k + 1 code, where moduti,.; is
used exclusively to manage the uncertainty in (47).

Consider a residue vectpr= (v ... Yk Yke1 --- Yn Yn+1) fOr @ codeword. According toy, we may comput&
as

- & M
YEZ_l:yi i, EEWKJ -6,M,0< g <k (49)

and proceed as before. The SEC-SA is based onxpnession fory defined as follows,

A& M
Y=y [ EE—KJ . (50)
i=1 m

It is clear from (49) that

Y=Y +6,My. (51)
The first step then in the SEC-SA is to computeiangtyD:

D = (Y — Yr) modMg = (Y modMg — Yg) modMg. (52)
HereYg is the integer obtained by combining the parisidaesy,, | =k + 1, ...,n + 1. It was used earlier in
(22) also. It is possible to avoid large integeithanetic by computingy mod Mg directly rather than
computingY first and then taking mokllz. The modified syndrome to be used in SEC-SA is thefined as

o=M MDmodMpg. (53)
Substituting fory from (51),Y from (27) and from (52) into (53), we get

5=|MA(E, -Ep)+ (6, -a)modM. (54)
As before, three cases follow.

Case 1. No error ip. In this casely, =Ep =a= 0 and

d=6,modMg =6,,0< 6, <k (55)
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Case 2. An error in information partyn Leti-th information residue be in error. In this caSgis same as
in (39),E, =0, and

o=lg oy + (6, -a)modM s, 1< 6, —a<k (56)
Thus,

m [0 =g +m [(6, -a)jmodM g, -1< §,—a<k. (57)

Finally, (57) leads tom <m o< k Om. Since we process only positive integers in moduithmetic, we
may write, <m 0<k m orMg—m <m [B< Mg

Case 3. An error in parity partyn In this casel, =a= 0 and
JE[—MglEEP+HmeodMR,0§ g, <k (58)
Another way to express (58) for an error inithike parity residuei, =k + 1, ...,n+ 1, is
e =6, -M Bmodm, (59)
g=omodm=4,j=k+1,..,i-1i+1,..n (60)
We may also write (58) as
d=oJmod Mr/m) =&, (61)
Based on the above analysis of error events, a letenPEC-SA for RRNS can now be described as faiow
Algorithm for SEC-SA for SEC-MED in RRNS (single syndrane based)
Input: Received residues= (y; ... Yn Yn+1)-
Output: Corrected residues if up to 1 error occurs; Erdatected if up ta — 2 errors occur.
Step 1. Compute the quantitp in (52) and syndrome valu®in (53).
Step 2. Error Computation
A. No Error. If 0< d<Kk, then declare “no error occurredSTOP.
B. Error in parity residue: Approach 1. Forl =k + 1, ...,n + 1, compute
g=omod M/ m).

If exactly one of (< g <k, then declare “1 error in parity residue.” Say,lf=i, 0< g <k theni-th parity
residue is in errorg, = dandg =6, -M B modm . Next, go tcE.
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C. Error in information residue.
Forj=1, 2, ...k, compute
€,0=m D mModMg,
€81=Mr—8.

If either 0 <g o <k [Im or 0 <g ; <m then declare theth residue in error,

Where

§ = ()" CBomodm,

if 0 < g <klm, and

§=m— ()" (g1 modm,

if 0 < g, <m. Next, go tcE.

D. Multiple error detection. Declare “more than 1 error detecte8TOP.

E. Single residue correctionFori-th residue in erroi,d (1 2 ...n + 1), error correction is carried out
as

X = (y; —e) modm,.

F. END.
The above SEC-SA has been described for RRNS. Aasi®EC-SA can be also described for RNS-PC.
We end this section by stating that the SEC-MED 8B&-SA algorithms described here are computational

in nature. It is straightforward to describe aniegjent implementation that is based on a tabl&-lop once
the syndrome value is computed in step 1 of thediag algorithms.

5 Conclusion

In this work, we have described mathematical cotibn and algorithms associated with syndrome dase
single error correcting codes for RRNS. All suchoaithms are described within the framework of regke
syndrome used for error correction as well as damelous error detection. Examples are also provioed
illustrate the various features and procedurescested with the various algorithms. Finally, a siast
algorithm is described that simplifies computatiahshe expense of an additional moduli.
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