

International Journal of Plant & Soil Science 3(1): 71-84, 2014; Article no. IJPSS.2014.006

SCIENCEDOMAIN international www.sciencedomain.org

Changes in Phosphorus Fractions in Manure and Phosphorus Fertilizer Amended Soil of Southwestern Nigeria

A. O. Ojo^{1*}, M. T. Adetunji², K. A. Okeleye³ and C. O. Adejuyigbe²

¹Institute of Agricultural Research and Training, Obafemi Awolowo University, Nigeria. ²Department of Soil Science and Land Mgt, Federal University of Agriculture, Abeokuta, Nigeria. ³Department of Crop Production, Federal University of Agriculture, Abeokuta,

[°]Department of Crop Production, Federal University of Agriculture, Abeokuta, Nigeria.

Authors' contributions

This work was part of my PhD research findings under the supervision of the three co-authors at the Federal University of Agriculture, Abeokuta, Nigeria.

Original Research Article

Received 25th June 2013 Accepted 17th October 2013 Published 11th November 2013

ABSTRACT

Phosphorus (P) fractions are important forms of P in the soil which determines P availability, an important ion in the soil for plant use. Incubation study was conducted in the laboratory for ten weeks to study the changes in selected P fractions in an Alfisol (Iwo soil series) in the southwestern region of Nigeria amended with poultry manure and single superphosphate (SSP).

The soil was collected from the experimental field of the Institute of Agricultural Research and Training, Ibadan, Nigeria. Poultry manure at 0, 5, 10, 15 and 20 t ha⁻¹ was applied in combination with single superphosphate (SSP) at 0, 15, 30, 45 and 60 kg P ha⁻¹. The treatments were replicated three times and phosphorus fractions (Organic P, Fe-P, AI-P, occulded P and residual P) were determined before and at two weekly interval during the incubation studies using the Chang and Jackson method.

Significant increases in Fe-P and Al-P fractions were observed to the 6th week of incubation after which it started decreasing when poultry manure was applied solely and in combination with SSP. The sole application of SSP i.e. at 30 kg P ha⁻¹ of SSP increased the recalcitrant P fractions while poultry manure reduced it. When Fe-P

^{*}Corresponding author: E-mail: remia_ode@yahoo.com;

extractable with NaOH i.e. NaOH-Pi builds up it acts as a sink for P and this is achieved more when the poultry manure was combined with SSP. Application of 20 t ha⁻¹ of poultry manure in combination with 30 kg P ha⁻¹ of SSP increased the Fe-P availability and therefore a potential sink for P.

Keywords: Iwo soil; poultry manure; singlesuperphosphate; phosphorus fractions.

1. INTRODUCTION

Phosphorus is an essential element, second to nitrogen as a macronutrient and needed for various metabolic processes in the plant. Soils in the southwestern part of Nigeria has been reported to be low in phosphorus [1]. Phosphorus deficiency can be attributed to loss due to erosion and phosphorus fixation or phosphorus uptake by plant [2,3]. Phosphorus fixation by ions in the soil is pH dependent i.e either it is an acidic or alkaline soil and these phosphorus forms determines the availability of phosphate in the soil solution. The release rate of adsorbed P directly affects the P supply to plants and this is important for long-term planning of crop production [4]. In the southwestern part of Nigeria, soils formed on the basement complex rock have been observed to have low levels of Fe-P and AI-P [5]. These two fractions determines the capacity of the soil to supply P into the soil solution. Apart from Fe-P and AI-P, the recalcitrant P fractions also exist which includes the occluded P and residual P fraction, which all exist in various level of abundance in Nigeria soils [6]. Increase or decrease in these P fractions is mostly affected by amendments which include both the organic and inorganic fertilizer [7]. Most farms in Nigeria are been cropped with the application of inorganic fertilizer but due to the high cost of purchasing these fertilizers, farmers are gradually adopting the use of organic fertilizers. Animal manure is a low-cost alternative to mineral fertilizers which provide a valuable source of nitrogen (N) and phosphorus (P) for crops [8]. Maintenance of adequate amounts of soil P through application of inorganic and/or organic P sources is critical for long-term agricultural productivity [9]. Organic and inorganic fertilizers have different effects on the organic and inorganic P fractions. For instance, the residual P pool may increase with increasing rate of fertilizer application [10] whereas P adsorption to soil particles can be greatly reduced through applying organic substances [11]. Adding P fertilizer or in combination with organic manure has been found to increase the concentrations of the labile inorganic pools as well as various nutrients in soils. However, this study was carried out to determine the changes in the organic and inorganic P fractions as a result of the sole and combined application of poultry manure and SSP.

2. MATERIALS AND METHODS

2.1 Characteristics of the Soil and Organic Amendment

Surface soil (0-20cm) formed on a basement complex rock located in the experimental field of the Institute of Agricultural Research and Training (Lat 7° 30', long 3° 54') in the southwestern part of Nigeria was used for the experiment. The soil was selected as it typifies soils that have received both poultry manure at 5, 7.5 and 10 t ha⁻¹ while N.P fertilizer has been applied at 20, 40 and 60 kg P ha⁻¹ over a long 10 years. A composite soil sample was taken from the surface layer (0-20 cm) of the soil, air dried and crushed to passed through a 2 mm sieve. Poultry manure cured for 2 months was collected from the Institute's poultry farm.

The soil had a particle-size distribution of 740g kg⁻¹ sand, 120g kg⁻¹ silt and 140 g kg⁻¹ clay as measured by the hydrometer method [12]. Soil pH was measured using a 1:2 soil to water ratio. Organic C was measured by the wet oxidation method with sulphuric acid. Initial P fractions was determined and presented in Fig. 1. Available P using 0.03N NH₄F in 0.025N HCI as the extractant [13]. The soil was near neutral, low in N and organic matter but moderately high available P. The exchangeable cations was also low except Ca which was adequate in the soil and can be attributed to past fertilizer application (poultry manure and N.P.K fertilizer) on the soil (Table 2).

Analysis of the poultry manure (Table 3) used gave 5.82 % nitrogen, 12.74 % phosphorus (P) and 0.94 % potassium (K). Organic carbon content was slightly high in the manure (13.38 %) while the percentage Ca, Mg and Na in the organic manure were 8.04, 0.61 and 1.30 %. The C/N ratio was however low (2.3:1) while Fe was in abundance in the manure at 1555 mg kg⁻¹.

2.2 Incubation Experiment

The incubation study was conducted to determine the changes in P fractions from soil treated with poultry manure and single super phosphate. Surface soil from the Institute of Agricultural Research and Training, Ibadan, Nigeria was air-dried and passed through a 2 mm sieve. Poultry manure and SSP was ground before mixing with the soil. Three hundred grammes each of the soil was weighed into plastic cups and mixed thoroughly with 0.75g, 1.5g, 2.25g, 3g of poultry manure and 0.0022g, 0.0045g, 0.0067g, 0.009g of single super phosphate in three replicates. This corresponds to 5, 10, 15 and 20 t ha⁻¹ of poultry manure and 15, 30, 45 and 60 kg P ha⁻¹ of SSP. Treatment without SSP and poultry manure application was included for comparison. The treatments were arranged as a 5 x 5 factorial experiment in a completely randomized design (CRD). The incubation study was carried out in the laboratory with a temperature of 30°C and 60% relative humidity. The temperature was maintained with the use of a regulated air-condition while a de-humidifier was used to regulate the relative humidity. The soil were moistened to field capacity with distilled water and left for ten weeks in a covered plastic cups. The plant available water was determined using a tension table at 0.1 bar suction. Soil samples were taken using a 10 cm diameter tube at two weeks interval and analysed for phosphorus fractions.

2.3 Phosphorus Fractionation

A 1g soil sample was placed ina 50ml centrifuge tube and was extracted sequentially with 1M NH_4CI , 0.5M NH_4F , 0.1M NaOH, Sodium citrate/with sodium dithionite and 0.25M H_2SO_4 and this is tabulated below in Table 1. After the sequential extraction, residual P was extracted using the H_2O_2 - H_2SO_4 wet oxidation technique [14]. The hours of shaking varied depending on the fraction which was been extracted after which the tubes were centrifuged and the supernatant decanted [15]. Inorganic P in the various soil extracts was determined colorimetrically using the ascorbic acid method [16]. An spectrophotometer was used to measure absorbance at wavelength of 882nm.

Treatments	Inorganic	Organic	Total
No SSP, No PM	0	0	0
SSP 15	15	0	15
SSP 30	30	0	30
SSP 45	45	0	45
SSP 60	60	0	60
SSP 15 + PM 5	15	0.01	15.01
SSP 15 + PM 10	15	0.02	15.02
SSP 15 + PM 15	15	0.03	15.03
SSP 15 + PM 20	15	0.04	15.04
SSP 30 + PM 5	30	0.01	30.01
SSP 30 + PM 10	30	0.02	30.02
SSP 30 + PM 15	30	0.03	30.03
SSP 30 + PM 20	30	0.04	30.04
SSP 45 + PM 5	45	0.01	45.01
SSP 45 + PM 10	45	0.02	45.02
SSP 45 + PM 15	45	0.03	45.03
SSP 45 + PM 20	45	0.04	45.04
SSP 60 + PM 5	60	0.01	60.01
SSP 60 + PM 10	60	0.02	60.02
SSP 60 + PM 15	60	0.03	60.03
SSP 60 + PM 20	60	0.04	60.04

Table 1. Showing total amount of P applied in each treatment

Table 2. Sequential P fractionation procedures and targeted P forms

Fraction	Extractants	Equilibration	Washing	Targeted
NH₄CI-P NH₄F-P	IM NH₄CI 0.5M NH₄E	30mins 1 hour	None None	Saloid-bound P
NaOH – P	0.1M NaOH Saturated Nacl + 5 drops of conc. H_2SO_4	15 mins	Saturated NaCl	Fe-P
Sodium + citrate Sodium dithionite P	0.3M sodium citrate + 1g solid Sodium dithionate + sat Nacl	Shake 15mins, preheat 15mins at 85 ⁰ C after sodium citrate, additional 15 mins after dithionte addition	Saturated NaCl	Reductant – Soluble P
NaOH-P	O.1M NaOH + few drops of conc. H_2SO_4 to remove colour	15 mins	Saturated NaCl	Occluded – P
H_2SO_4-P	0.25M H ₂ SO ₄ + 25ml Sat. Nacl	1 hour	Saturated NaCl	Ca-P
Residual P	Conc. $HNO_3 + HCI$ + 30% H_2O_2	Variable until complete	None	Organically stable organic and inorganic P

2.4 Statistical Analysis

The data collected were subjected to analysis of variance using the statistical analysis system (SAS) – General Linear Model [17]. Means were separated at 5% probability by Duncan Multiple Range Test.

3. RESULTS AND DISCUSSION

Initial phosphorus fractionation of the soil showed Al-P to be the most extractable P form in the soil followed by organic P and then Fe-P (Fig 1). The effect of the combined application of poultry manure and SSP was observed with the change in the order of abundance to organic P > Fe-P > Al-P (Tables 5, 7, 8).

Fig 1. Initial Phosphorus Fractions of the soil

Fable 3. Initial chemi	al properties	of the soil
------------------------	---------------	-------------

Parameters	Values
pH (H ₂ O)	6.40
Organic Matter (g kg ⁻¹)	24.08
$N(g kg^{-1})$	0.20
$P(mg kg^{-1})$	14.20
Exchangeable cations (c mol kg ⁻¹)	
Са	1.14
Mg	0.82
K	0.47
Na	0.09
Particle size (g kg ⁻¹)	
Sand	740.00
Clay	120.00
Silt	140.00

Nitrogen (N) (%)	5.82
Phosphorus (P) (%)	5.54
Potassium (K) (%)	0.94
Na (%)	1.30
SO_4 - $S(\%)$	0.14
Organic C (%)	13.38
C/N	2.30
Calcium (%)	8.04
Magnesium (%)	0.61
$\operatorname{Iron}(\operatorname{mg} \operatorname{kg}^{-1})$	1555
Copper (mg kg ⁻¹)	33.30
Zinc (mg kg ⁻¹)	100.30
Manganese (mg kg ⁻¹)	180.00

Table 4. Characterization of the poultry manure used

3.1 Organic P

The effect of the sole and combined application of poultry manure and SSP is shown in Table 5. The organic P fraction was not increased when SSP was applied alone and this could be due to the fact that it is an inorganic fertilizer and will contribute to the inorganic pool rather than the organic pool. The result of the characterization of the poultry manure (Table 4) showed that the poultry manure had more of nitrogen and phosphorus and this would have contributed more to the organic P pool. Increase in organic P was however observed to the 4th week when poultry manure was applied in combination with SSP but decreased at 6WAI when poultry manure was applied alone. The largest extractable P was however obtained when poultry manure was applied at 20 t ha⁻¹ in combination with 45 kg P ha⁻¹ of SSP. About 36 years ago, a similar result was obtained [18].

3.2 Residual P

The residual P fraction of the soil as a result of the amendment is shown in the Table 6 and increased by both the sole application and the combined application of poultry manure and SSP. Although the sole application of SSP was more effective in increasing the residual P fraction than the sole application of poultry manure, the combined application of poultry manure at 15 t ha⁻¹ and SSP at 15 kg P ha⁻¹ gave the most significant increase and this occured at the initial stage of the incubation studies i.e. 2 weeks after incubation .After the initial increase, the residual P fraction started decreasing which signifies the release of P from the non-labile pool into the labile pool due to mineralization and hereby shows the importance of combining poultry manure with an inorganic fertilizer like SSP in increasing P availability in the soil. An increase in residual P fraction in a study on sequential changes in soil (Humic Gleysol) organic P and inorganic P has been reported [19]. While another study on continuous cultivation with cow dung and P fertilizer gave a decrease in the residual P fraction in a study on the dynamic of inorganic P and organic P pools of a savanna Alfisol [20].

	2WAI				
	P rates (kg P/ha)				
Poultry manure (t/ha)	0	15	30	45	60
Ò	48.98u	60.23r	59.78s	46.57u	51.88t
5	110 75h	87 23n	86 95n	80 920	63 45a
10	175.63c	117 50g	69 76n	93 75m	250 20a
15	148 13d	98 75i	81 130	128 25e	96 881
20	100 03i	184 38h	118 13f	100.04i	08.00k
20	100.001	104.000	110.101	100.041	00.0 IK
			4WAI		
			P rates (kg P/l	na)	
Poultry manure (t/ha)	0	15	30	45	60
0	34.50u	56.72q	53.75r	50.20t	38.13u
5	46.25s	291.25i	168.731	341.85e	241.88j
10	227.50k	309.34h	133.62n	185.031	388.13c
15	107.50p	125.100	352.50d	166.85m	337.75f
20	313.13g	105.56p	226.50j	590.43a	390.66b
	-		-		
			6WAI		
			P rates (kg P/l	na)	
Poultry manure	0	15	30	45	60
(t/ha)					
0	22.78t	44.38s	22.50t	48.38s	53.13r
5	123.75m	110.13n	75.00p	140.63k	387.50b
10	106.250	216.88i	73.13q	318.75d	286.10e
15	356.25c	128.791	149.38j	264.38g	223.21h
20	431.24a	128.841	216.88i	275.03f	148.13j
			0\A/AI		
			OVVAI P rates (ka P/ł	ha)	
Poultry manure	0	15	30	45	60
(t/ha)	U	10		40	
0	36 40s	40 56r	18 72t	38 90s	40 20r
5	48 90a	123 10k	186 25e	148 13h	225.03c
10	672 889	120.10k	85.63n	146 88h	85.63n
15	101 22m	180.00j	202 50d	68 75n	356 25h
20	75 630	118 72	140 63i	170 21a	107 50m
20	10.000	110.721	140.001	170.219	107.5011
			10WAI		
			P rates (kg P/I	na)	
Poultry manure (t/ha)	0	15	30	45	60
0	22.72s	34.56r	18.02t	34.32r	38.76q
5	128.701	118.86m	184.20f	138.12k	94.70o
10	267.50b	147.50i	132.22k	193.10e	196.88d
15	100.05n	150.22i	171.25a	76.42p	105.15n
20	278.13a	98.200	154.38h	232.45c	109.38n
20	278.13a	98.200	154.38h	232.45c	109.38n

Table 5. Effect of treatments on organic P in the incubation experiment

	2WAI					
		P rates (kg P/ha)				
Poultry manure (t/ha)	0	15	30	45	60	
0	34.501	116.25e	61.25i	72.50h	157.50b	
5	71.88h	45.63k	99.38f	49.38k	90.00f	
10	50.63i	83.13a	51.23i	140.00c	125.63d	
15	91.25f	242.50a	80.63a	115.63e	81.25a	
20	79.99a	41.88k	68.13i	42.50k	48.13k	
	0					
			4WAI			
			P rates (kg P/	ha)		
Poultry manure (t/ha)	0	15	30	45	60	
0	36.90h	76.88e	72.50e	35.63h	98.13d	
5	77.50e	38.75h	50.63f	54.85f	219.38a	
10	93.13d	71.25e	57.50f	116.25c	98.13d	
15	76.88e	38.75h	96.25d	71.88e	57.50f	
20	59.97f	79.38e	126.26c	41.25g	156.85b	
			6WAI			
			P rates (kg P/	ha)		
Poultry manure	0	15	30	45	60	
(t/ha)						
0	30.34m	136.23g	122.50h	84.38k	153.13e	
5	84.38k	218.19b	69.381	130.63g	121.88h	
10	116.25i	231.25a	69.331	86.88k	160.03d	
15	144.38f	89.38k	209.38b	168.13d	195.00c	
20	86.20k	103.13j	135.63g	130.63g	181.23c	
			8WAI			
	· · · ·		P rates (kg P/	ha)		
Poultry manure	0	15	30	45	60	
(t/ha)						
0	22.501	50.00h	45.03j	44.71j	80.03e	
5	43.75j	112.50d	162.50b	39.38k	41.88j	
10	72.50f	56.25h	82.50e	76.88f	48.13i	
15	60.42g	55.03h	44.38j	40.03j	48.14i	
20	66.25g	221.88a	45.63j	140.63c	35.63k	
	·	10WAI				
	•	45	P rates (kg P/	na)	<u></u>	
(t/ha)	U	15	30	40	00	
0	22.78h	47.83f	117.50c	40.12f	65.00d	
5	56.88e	38.75g	161.25b	36.25g	54.38e	
10	42.50f	53.13e	45.63f	191.25a	63.13d	
15	69.25d	46.88f	55.03e	51.25e	36.88g	
20	59.38e	58.75e	50.03e	190.06a	47.50f	

Table 6. Effect of treatments on Residual P in the incubation experiment

3.3 Fe-P

Effect of the amendments on Fe-P in the soil is shown in Table 7. This particular soil was formed on a basement complex rock and Fe-P alongside AI-P signifies the capacity of the soil to supply P into the soil solution. In Iwo soil, a soil formed on the basement complex rock, most of the mineralized P were converted to Fe-P and AI-P [21]. Most amendments increased the Fe-P fraction to the 6th week of incubation with a decrease at 8WAI. Availability of P is determined by the dynamic relationship between labile P and the solution. However, at 10WAI, Fe-P later increased as a result of most amendments with the largest extractable Fe-P obtained when PM was applied at 20 t ha⁻¹ with 30 kg P ha⁻¹ of SSP. Increases in Fe-P during an incubation studies have been observed on some calcareous soils [22]. A high significant increase in Fe-P as a result of the application of organic manure and inorganic fertilizers have also been reported [23].

3.4 AI-P

The effect of sole application of single superphosphate and the combined application of poultry manure and single superphosphate on the Al-P fraction was significant.(Table 8) The sole application of poultry manure though significant did not increase the Al-P fraction . During the incubation study, Al-P increased to the 6th week of incubation before decreasing, indicating immobilization of P before the 6th week and invariably inavailability of P in the soil solution. The highest significant increase was obtained with the sole application of 30 kg P ha⁻¹ of SSP at 6WAI (390.63 mg kg⁻¹). Similar results were obtained in a study on an andosol to evaluate wheat yield, P and N uptake and soil P fraction in a long term fertilization [24].

3.5 Occluded P

The effect of the sole and combined application of poultry manure and SSP on the occluded P fraction is shown in Table 9. The sole application of SSP highly increased the occluded P fraction while the application of poultry manure decreased it. The decrease in this fraction indicates the ability of poultry manure to decrease P fixation and increase P availability in the soil solution [25]. Application of 30 kg P ha⁻¹ of SSP gave the largest value of 327.50 mg kg⁻¹ at 6WAI. Increase in occluded P have been observed in a calcareous soil as a result of fertilization [26].

			2WAI			
			P rates (kg P/	/ha)		
Poultry manure (t/ha)	0	15	30	45	60	
0	35.670	68.13e	70.63d	75.63c	50.631	
5	66 25f	62 50a	60 62h	53 10i	59 38i	
10	46 88n	30.61p	69.20e	50.63	131 25a	
15	50.631	88 75h	51 88k	77 50c	61 88g	
20	47 50n	45.63n	88 75h	48 75m	59 38i	
20	11.0011	10.0011	00.100	10.7 011	00.001	
			4WAI			
			P rates (kg P/	′ha)		
Poultry manure (t/ha)	0	15	30	45	60	
0	47.801	85.63c	68.75i	71.88h	81.25d	
5	73.13g	61.88j	56.85k	80.19d	58.75k	
10	75.63f	78.13e	97.50a	70.73h	71.25h	
15	84.42c	70.51h	91.88b	81.88d	56.25k	
20	73.13g	68.75i	98.75a	77.50e	76.88e	
			6WAI			
		P rates (kg P/ha)				
Poultry manure (t/ha)	0	15	30	45	60	
0	26.57p	75.03k	101.25b	90.57g	80.63j	
5	96.25d	79.38k	90.11a	89.38h	78.21k	
10	70.63n	76.25	71.25n	92.50f	102.50b	
15	71.88n	98.22c	105.03a	73.75m	66.250	
20	94.38e	92.86f	98.91c	81.88i	92.23f	
			8WAI B rates (kg B)	(ha)		
Poultry manuro	0	15	30	<u>110)</u> 15	60	
(t/ba)	0	15	50	45	00	
0	31 20n	50 21a	50.38a	61.05f	47 50	
5	00.23h	02 70a	41 25L	55 03b	47.30j 51.25j	
J 10	30.230 29.75m	92.70a	75.00d	91.250	51.201 55.02h	
10	50.70m	54.3011	75.000 02.75o	72 254	50.280	
20	59.2 Ty	60.03f	95.75a 45.00k	82.05c	19.30y	
20	50.051	00.031	40.00K	02.900	40.75j	
			10WAI			
	P rates (kg P/ha)					
Poultry manure (t/ha)	0	15	30	45	60	
0	29.80p	25.03q	45.031	100.20c	62.42i	
5	62.50i	51.88k	38.75n	73.13q	147.50b	
10	34.380	46.881	40.63m	63.75i	73.13g	
15	70.63h	88.91d	44.381	79.38f	71.25h	
20	54.38j	85.03e	151.25a	36.25n	50.11k	
		• • • •				

Table 7. Effect of treatments on Fe-P in the incubation experiment

	2WAI				
	P rates (kg P/ha)				
Poultry manure (t/ha)	0	15	30	45	60
ò	78.20a	31.25d	37.50d	28.10f	31.25d
5	36 88d	34 38d	22 25h	28 13f	30.32e
10	25.50g	22 24h	15 50i	25.63g	36 25d
15	27.50f	36.88d	30 12e	37 50d	61 20b
20	41.88c	24 38g	35.63d	29.38f	15.63i
	11.000	21.009	00.004	20.001	10.001
			4W	ΑΙ	
			P rates (kg P/	ha)	
Poultry manure (t/ha)	0	15	30	45	60
0	88.45a	36.88h	59.23e	60.78e	63.73d
5	73.75c	71.25c	60.23e	73.75c	60.63e
10	66.25d	58.73e	32.91h	42.14a	75.63c
15	65.60d	38.21h	59.38e	40.33a	74.45c
20	77.50b	65.03d	39.02h	60.36e	51.62f
			6WAI		
		P rates (kg P/ha)			
Poultry manure	0	15	30	45	60
(t/ha)					
0	112.40d	378.77b	390.63a	148.15c	78.75i
-	00.050	100.00	04.05	04.000	00.00
5	96.251	103.29e	81.25h	94.221	68.88j
10	64.21J	83.25N	71.25	108.750	90.21g
15	81.88N	18.151	13.131	62.24J	96.251
20	oo. 159	02.3011	105.63e	105.036	92.041
			D rates (kg D/	ha)	
Boultry manuro	0	15	20	11a) AE	60
(t/ha)	U	15	30	45	00
0	103 50a	35.63e	51 25c	34.38e	41 10d
5	40 70d	56 250	34 38e	50.63c	29.38f
10	54 60c	31 25e	35.63e	38 75e	40.63d
15	31.07e	52 500	40 22d	31.88e	59.380
20	31 25e	30.03e	43 75d	63 14b	31.25e
	01.200	00.000	10.1 00	00.110	01.200
			10WAI		
			P rates (kg P/	ha)	
Poultry manure (t/ha)	0	15	30	45	60
0	105.26b	28.13h	55.03e	42.50f	28.13h
5	26.89h	45.63f	56.88e	93.13c	38.75g
10	43.75f	133.13a	43.75f	41.88f	54.38e
15	37.50g	41.88f	26.25h	41.88f	68.75d
20	30.63g	68.75d	50.03e	52.50e	41.88f

Table 8. Effect of treatments on AI-P in the incubation experiment

	2WAI				
		P rates (kg P/ha)			
Poultry manure (t/ha)	0	15	30	45	60
Ò	22.98f	59.38c	46.25d	57.50c	37.50e
5	20.07f	38.75e	45.03d	91.25a	41.25d
10	16.25g	57.50c	36.25e	56.88c	58.23c
15	16.88g	39.38e	42.50d	56.88c	37.50e
20	20.03f	54.38c	75.63b	57.50c	52.50c
				4WAI	
			P rates (kg P/	'ha)	
Poultry manure	0	15	30	45	60
(t/ha)					
Ò	36.74i	92.50d	65.01f	75.03e	69.38f
5	18.63j	66.88f	72.25e	79.21e	58.13h
10	14.22j	74.12e	67.50f	60.73g	71.56e
15	12.10j	68.73f	113.13b	136.88a	58.75h
20	19.63j	58.13h	60.63g	103.92c	117.50b
	-		-		
			6WAI		
			P rates (kg P/	'ha <u>)</u>	
Poultry manure	0	15	30	45	60
(t/ha)					
0	38.98i	61.88h	327.50a	63.13h	98.05e
5	16.25j	105.03d	101.62d	65.00h	62.50h
10	12.75j	61.88h	61.85h	61.25h	68.75h
15	13.75j	90.89f	66.88h	106.88d	75.03g
20	17.50j	111.78c	141.78b	65.63h	102.60d
			0.474		
			8WAI		
	•	4.5	P rates (kg P/	na)	
Poultry manure	0	15	30	45	60
(t/na)	07.00~	100 106	140.00-	00.00-	25.026
0	27.30g	108.130	140.068	98.00C	35.031
5 10	21.03y	00.70U	30.701 101 256	40.750	93.75C
10	17.300 10.40b	30.001 100.29h	101.200	120 200	29.201 20.02f
10	19.4011 25.62a	109.300	109.30D 20.20f	104.76b	30.031 27.50f
20	25.03y	42.000	39.301	104.700	57.501
			10\WAI		
			P rates (kg P/	(ha)	
Poultry manure	0	15	30	45	60
(t/ha)	v	10		40	
0	39 10f	51 88d	53 75d	58 13d	54 38d
5	28 75g	51 88d	51 25d	82 15a	51 88d
10	29.38g	58.13d	55.00d	50.00d	55.03d
15	26.25g	51.88d	49.38e	83.91a	61.25c
20	24.38g	71.88b	46.88d	39.38f	42.50d

Table 9. Effect of treatments on Occluded P in the incubation experiment

4. CONCLUSION

Fractionation of P at the initial stage showed AI-P to be the largest fraction in the soil used. However, during incubation, application of 30 kg P ha⁻¹ of SSP highly increased the AI-P fraction which was the same rate that led to the most significant increase in the occluded P fraction and therefore not a suitable treatment for P availability because occluded P is a non-labile P fraction which is not easily made available in the soil solution for plant use. The amount of P in solution at a given time is based on P sorption of P to AI/Fe and soil surfaces. The most significant increase in Fe-P which will invariably increase the solution P was observed with the application of 20 t ha⁻¹ of poultry manure in combination with 30 kg P ha⁻¹ of SSP and therefore a recommended rate of application.

COMPETING INTERESTS

Authors have declared that no competing interest exits.

REFERENCES

- 1. Chude VO, Olayiwola SO, Dauda C, Ekeoma A, editors. Fertilizer Use and Mangement Practices for Crops in Nigeria. 4th ed. Federal Ministry of Agriculture; 2012.
- 2. Warren G. Fertilizer phosphorus sorption and residual value in tropical African soils. NRI Bulletin 37. Natural Resource Institute, Chatham, England; 1992.
- Mokwunye AU, Chien SH, Rhodes E. Phosphorus reaction with tropical African soils. In management of Nitrogen and phosphorus fertilizers in Sub-Saharan African Eds. A.U. Mokwunye and P.L.C. Vlek. Martins Nulhoff Publishers, Dedrecht The Netherlands. 1986;253-281.
- 4. Hughes S, Reynolds B, Bell SA, Gardner C. Simple phosphorus saturation index to estimate risk of dissolved phosphorus in runoff from arable soils. Soil Use Management.2000;16:206-210.
- 5. Ibia TO, Udo ET. Phosphorus forms and fixation capacity of representative soils of Akwa Ibom State of Nigeria. Geoderma.1993;58:95-106.
- 6. Akinremi OO. Evaluation of analytical methods for total P in organic amendments. Communications in Soil and Plant Analysis. 2003;34:2981-2991.
- 7. Jianbo S, Lixing Y, Junling Z, Haigang L, Zhaohou B, Xinping C, Weifeng Z, Fusuo Z. Phosphorus dynamics: From Soil to Plant. Plant Physiology. 2011;156:997-1005.
- 8. Huhnke RL. Land application of livestock manure. 17th ed. Cooperative Extension Service, Oklahoma State Univ., Stillwater, OK. Extension Fact Sheet; 1982.
- 9. Motavalli PP, Miles RJ. Inorganic and organic soil phosphorus fractions after longterm animal manure and fertilizer applications. Better Crops. 2002;86(3):20-23.
- 10. Zhang TQ Mackenzie AF, Liang BC, Drury CF. Soil test phosphorus and phosphorus fractions with long-term phosphorus addition and depletion. Soil Science Society of America Journal. 2004;68:519-529.
- 11. Jianbo S, Lixing Y, Junling Z, Haigang L, Zhaohou B, Xinping C, Weifeng Z, Fusuo Z. Phosphorus dynamics: From Soil to Plant. Plant Physiology. 2011;156:997-1005.
- 12. Bouyoucos GJ. Hydrometer method improved for making particle size analysis of soils. Agronomy Journal. 1962;54:464-465.
- 13. Bray RH, Kurtz LT. Determination of total, organic and available forms of phosphorus in soils. Soil Science. 1945;59:39-45.

- 14. Agbenin JO, Goladi JT. Dynamics of phosphorus fractions in a Savanna Alfisol under continuous cultivation. Soil Use Management. 1998;14:59-64.
- 15. Chang SC, Jackson ML. Fraction of soil phosphates. Soil Science. 1957;83:133-144.
- 16. Murphy J, Riley JP. A modified single solution method for the determination of phosphorus in natural water. Anal Chem. Acta. 1962;27:31-36
- 17. SAS Institute. SAS for linear models. A guide to the ANOVA and GLM procedures. SAS Inst., Cary, NC; 2000.
- 18. Adepetu JA, Corey RB. Changes in N and P availability and P fractions in Iwo soil from Nigeria under intensive cultivation. Plant and Soil. 1977;46:309-316.
- 19. Zhang TQ, Mackenzie AF. Change of soil phosphorus fractions under long-term corn monoculture. Soil Science Society of America Journal. 1997;61:485-493.
- 20. Bouyoucos G. J. Hydrometer method improved for making particle size analysis of soils. Agronomy Journal. 1945;54:464-465.
- 21. Adeleye EO. Profile distribution of phosphorus fractions in soils derived from basement complex rocks in Southwestern Nigeria. Nigeria Journal of Soil Science. 2006;16:52-58.
- 22. Jalali M, Ranjbar F. Aging effects on phosphorus transformation rate and fractionation in some calcareous soils. Geoderma. 2010;155:101-106.
- 23. Park M, Singvilay O, Shin W, Kim, E, Chang J, Sa T. Effects of long-term compost and fertilizer applications on soil phosphorus status under paddy cropping system. Communications in Soil Science and Plant Analysis. 2004;35(11 & 12):1635-1644.
- 24. Takahashi S, Anwar MR. Wheat grain yield phosphorus uptake and soil phosphorus fractions after 23 years of annual fertilizer application to an Andsol. Field Crops Research. 2007;101:160-171.
- 25. Nziguheba G, Palm CA, Buresh RJ, Smertsen PC. Soil phosphorus fractions and adsorption as affected by organic and inorganic sources. Plant and Soil. 1998;198:159-168.
- 26. Shen J, Li R, Zhang F, Fan J, Tang C, Rengel Z. Crop yields, soil fertility and phosphorus fractions in response to long-term fertilization under the rice monoculture system on a calcareous soil. Field Crops Research. 2004;86:225-238.

© 2014 Ojo et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history: The peer review history for this paper can be accessed here: http://www.sciencedomain.org/review-history.php?iid=295&id=24&aid=2495