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ABSTRACT 
 
Aims: In the present work we explore magnetic properties especially spin glass, 
antiferromagnetic and paramagnetic states of diluted magnetic semiconductors 

� ��������′�� = ��, �� ��� A′ = S, Te, Se #$. 

Place: Department of physics, College of natural sciences, Addis Ababa University, 
between Sept. 2012, and May 2013.  
Methodology: Using classical Heisenberg model with high temperature series expansion 
extrapolated with pad%́ approximants. 
Results: Different magnetic phases using different concentration regions 
Conclusion: We used high temperature series expansion extrapolated with pad%́ 
approximants to determine the critical temperature ('(), exchange interaction couplings, 
critical exponents of magnetic susceptibility and correlation function.  
  
 
Keywords: Diluted magnetic semiconductors (DMSs); Heisenberg model; High temperature 

series expansion (HTSE); PAD%́ approximants. 
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1. INTRODUCTION 
 
There are several classes of semiconducting materials that are characterized by the random 
replacement of a fraction of the original atoms by magnetic atoms. The materials are usually 
known as diluted magnetic semiconductors (DMSs) or semi-magnetic semiconductors 
(SMSCs).The first so-called diluted magnetic semiconductors were IIB-VI semiconductor 
alloys like ��������'% and ��������'% [1] originally studied in the 1980s. These materials 
are either spin glasses or have very low ferromagnetic (FM) critical temperatures '( (~ few 
K) [2] and are, therefore, inadequate for technological applications which would require FM 
order at room temperature. It’s obvious that, the possibility of using the spin and the charge 
of the electrons for information processing will have numerous applications in recent 
technology. The DMS materials can be considered as consisting of two interacting 
subsystems. The first one of these subsystems is the system of delocalized conduction or 
valence band electrons/holes. The second one is the random and diluted system of localized 
magnetic moments associated with the magnetic atoms. These two subsystems interact with 
each other by the spin exchange interaction. The coupling between the localized moments 
result in the occurrence of different magnetic phases such as paramagnets, spin glasses 
and antiferromagnets. 
 
In this paper, we study spin glass and antiferromagnetic states that exist in IIB-VI 
semiconductors which consist of S, Te, Se, and of Zn, Cd. The fraction of cation site is 
replaced with Mn (or Fe) as the magnetic impurity. A prototype of this is ��������'%. 
Theoretical studies have shown that super exchange is the basic source of magnetic 
coupling, i.e., the filled valence band of the semiconductor exchange electrons with the half 
filled 3d band of the Mn. With this 2 electron process the interaction between the Mn will 
always lead to an antiferromagnetic interaction and seems to be true for both first and 
second nearest neighbors [3,4,5]. One of the advantages of IIB-VI materials is that they can 
host magnetic ions (e.g. ��)* ) which open the way for studying various spin-dependent 
phenomena. 
 
2. MODELS AND INTERACTION COUPLING CALCULATIONS 
 
We consider Heisenberg spin (vector spin) model. The Hamiltonian [6] will be:- 

       + = −2 ∑ /�01 23. 25 − 6 ∑ /)07 23. 28.                                                    (2.1)                                                                
  
Where (9:) and (9;) indicate nearest neighbor and next nearest neighbor summations 
respectively.  The vector spin [7,8] can be described as:- 
 
                           23. 25 = s=>s?> + s=As?A + s=Bs?B ,                                                                      (2.2) 

                           23. 28 = s=>sC> + s=AsCA + s=BsCB .                                                                (2.3) 
 
For diluted magnetic semiconductors containing the magnetic impurities [9] only in the 
octahedral sub lattices, by using molecular-field approximation we can obtain the 
relationship between paramagnetic Curie-temperature (DE) and the Neel temperature ('F), 
and  considered exchange interaction couplings /�  and /). According to Holland and Brown 
[10]:- 
 

                           'F = )G(G*�)
H7I J−4/� + 2/)L,                                                                        (2.4) 
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                          DE = )G(G*�)
H7I J12/� + 6/)L.                                                                   (2.5) 

 
Where ;O is the Boltzmann constant and P = 5 2R  is the spin of magnetic impurity (��)*). By 
using the experimental values of DE and 'F [11] we can determine the interaction couplings 
/� and /) for the concentrations (0.6 ≤ U ≤ 1). However, due to the nature of dilution problem 
in the system, we have to use the probability distribution to determine the interaction 
couplings for each concentration  U(0 ≤ U ≤ 1). The probability of the occupation of the ion 
(9) can be defined as:- 
 

                       V(9) = WX0 UX�0(1 − U)0 .                                                                      (2.6) 
    
 Where n is the total number of lattice sites inside a sphere of radius (Y0) and its volume 
(

Z
H [Y0H) (Y0  is the distance between ions 9 and j ), WX0 = X!

0!(X�0)!. Since, the structure of such 

system is a zinc blend structure, therefore n=12 and 9  varies from 0 to 12. But this does not 
mean that such method cannot be applied for other structures. The interaction coupling for 
such distribution (� ]Y �′) is assumed to be: 
                        

                  /̂ ^′0 = (/X̂�0 /̂ ′

0 )� XR .                                                                              (2.7) 
 
Therefore, for the zinc blend structure we can define:- 
                 

              /̂ ^′0 (U) = ∑ WX0 UX�0(1 − U)0�)0_` (/X̂�0 /̂ ′

0 )� XR .                                                   (2.8) 
 
When the interaction couplings /^(/^′) correspond to the nearest neighbor (nn), then  
/̂ ^′0 (U) = /�. But if /^(/^′) corresponds to the next nearest neighbor (nnn), /̂ ^′0 (U) = /). 
 
3. HIGH-TEMPERATURE SERIES EXPANSION (HTSE) 
 
In order to expand the magnetic susceptibility by using High- Temperature Series 
Expansion, first we have to find the relationship between susceptibility and correlation 
function i.e.  
 

                              a(') = b
F ∑ 〈23. 25〉01                                                      (3.1) 

 
By definition specific heat is the first derivative of internal energy with respect to 
temperature. But here the average energy of the system can be considered as internal 
energy and magnetic specific heat [12] of the system can be defined as:- 
 

                  �(') = e〈f〉
eg = �

F
e

eg �ghfijkl
ghijkl $ = �

F
e

eg m� n
nkgh{ijkl}
ghqijklr s.                                   (3.2) 

 From this equation average energy can be defined as:- 
 

                             〈+〉 = ghfijkl
ghijkl  ,                                                                              (3.3) 

or 
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                               〈+(〉 = ∑ tu(()v>w (�btu(())xuyz∑ v>w (�btu(())xuyz .                                           (3.4) 

 
Where +( is the Hamiltonian for the finite cluster c with eigenvalues  {X(|) and m is size of 
the cluster and the specific heat per site:- 
 

                                 |} = �
F

〈f~〉�〈f〉~
g~ .                                                                   (3.5) 

 
Where  � is inverse temperature (� = �

7Ig ) and N is the number of magnetic ions. 

Expression for the correlation function at the sites between 9 ��� : would be 
 

                                〈23. 25〉 = gh����i�E(�bf)  
ghi�E(�bf) .                                                                (3.6) 

 
Expansion of the correlation function in powers of 
 

                            〈23. 25〉 = gh����i�E(�bf)
ghi�E(�bf) = ∑ (��)�

�! ��∞�_` ��.                                           (3.7) 

 
Where  �� = �� − ∑ �7� �7���7���7_` ,     �� = 〈23. 25+�〉,    ���  �� = 〈+�〉. 
 
The calculation of ��  leads to a diagrammatic representation according to [13]. This can be 
done by using two basic steps: 
 

1.  Identifying and cataloguing of all diagrams or graphs which can be constructed from 
one dashed line connecting the site i  and j, and l straight lines, and the determination 
of diagrams whose contribution is non vanishing. This step has already been 
accomplished in the Stanley work [14].  

2.  Counting the number of times that each diagram can occur in the magnetic system.  
Expansion as power series in reciprocal temperature of the zero-field susceptibility of 
a magnetic      system using correlation function to order six in � can be defined as:- 

 
                                 a(�) = ∑ ∑ �(�, �)���X�X_�X�_�X ,                                              (3.8) 
 
 

                                �)(�) = ∑ ∑ |(�, �)���X�X_�X�_�X  .                                              (3.9) 
 

Where � = �~
�z   and = )�(�*�)�z

7Ig  .  Spin glass susceptibility (a��) is non linear. This is because 

of the order parameter (q) is non linear i.e. the self-overlap, also called Edwards-Anderson 
[15] parameter is defined as 
   

                               � = �
F ∑ J〈�0〉)L�}0  .                                                                        (3.10) 

 
This leads to the magnetic Spin glass susceptibility (a��) as 
 

                                χ�� = �
��� ∑ �〈S=S?〉)���=? ,                                                      (3.11) 
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where the correlation length of the correlation function �〈�0�1〉)��}  possibly diverges at 

' = '�� . 
 

4. PAD��  APPROXIMANTS (P.A) 
 
Pad%́ approximants (P.A) [16] have been extensively used for the analysis of high-
temperature series expansions [17]. A [L, K] Pad%́ approximants to a function �(U) =∑ �0F0_` U0 is a rational fraction  V�(U) � (U)⁄  where V� and �  are polynomials with degrees L 
and K respectively. Therefore, 
 
                              �(U) = V�(U) � (U)⁄ + ¢(U *�*�).                                                   (4.1)               
 
In our case, P.A (L,K) to a series  a(') = ∑ ∑ �(�, �)���X�X_�X�_�X  or  �)(') = ∑ ∑ |(�, �)���X�X_�X�_�X  is a rational fraction  i.e. 
 
                                  a(') ]Y �)(') ≈  V�(U) � (U)⁄ + ¢(U *�*�).                                     (4.2) 

 
Close to a second-order phase transition at finite temperature '(�� from a paramagnetic to an 
ordered state, thermodynamic quantities generally diverge as 
 

                                    a(') ∝ (' − '()�¥ ,                                                                         (4.3) 
and  
                                 �)(') ∝ ('( − ')�)¦.                                                                       (4.4) 

 
The Pad%́ approximants to the logarithmic derive (�§� a(') �' ≈ �¥

g�g̈ )R  help to determine the 

critical temperature, the critical exponents of the susceptibility and correlation function © ��� � respectively. 
 
5. RESULTS AND DISCUSSION 
 
By using mean- field approximation and experimental values for the Neel temperature and 
the Curie Weiss temperature of the materials, we determined the nearest neighbor (nn) and 
next nearest neighbor (nnn) exchange interaction couplings for the ordered state. By taking 
into consideration the disordered state i.e. using probability distribution, we have computed 
both interaction couplings. The critical exponents associated with magnetic susceptibility and 
correlation function © = 1.38 ± 0.1 and � = 0.8 ± ]. 1 respectively were also obtained. Based 
on these exchange coupling and using Pad%́  approximants we presented concentration 
dependent transition temperature (Phase diagram) as follows: 
 
In this case we can justify that there is spin glass phase in range (0.2 ≤ U < 0.6) and 
antiferromagnetism in range (0.6 ≤ U ≤ 1) based on exchange interaction coupling 
calculations. Fig1 explains about different magnetic phases for different concentration 
regions.  
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Fig. 1. explains the relationship between the magnetic phase transition temperatures 
versus magnetic impurity concentration of ��������′  

 
Fig. 2 shows a plot of specific heat(C) vs. temperature for different materials at the same 
concentration of impurities. As we can see from the figure there is a clear evidence for 
temperatures getting small the specific heat approaches to zero. The peaks of the curves for 
these materials are broad which are similar to experimentally observed ones. Obviously, 
when the temperature is reduced, the value of thermal fluctuations become small and the C 
will also be small. At high temperature the specific heat tends to constant value as all 
microstates are equally occupied. However, the fluctuations of the energy are approaching 
maximum value near ' /R ~0.6 , giving a specific heat peak.  

 

 
 

Fig. 2. Schematic representation of magnetic specific heat (J/mole k) vs. temperature 
(k) for the materials (��������′  ) 
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6. CONCLUSIONS 
 
In the present work the exchange integrals (/� ��� /))  for nearest neighbor (nn) and next 
nearest neighbor interactions (nnn) using mean-field approximation in concentration range (0.6 ≤ U ≤ 1) and taking into consideration the dilution problem we used probability 
distribution in range (0.2 ≤ U < 0.6) for the systems were computed. We used these values 
for magnetic susceptibility and magnetic specific heat calculations. In order to determine the 
susceptibility and specific heat, we employed high temperature series expansion and Pad%́ 
approximants at the critical region. Different magnetic phases such as (spin glass, 
antiferromagnetic and paramagnetic) based on their concentration ranges were established 
and the findings are in agreement with previous studies.  
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