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ABSTRACT 
 

By applying the exact Stirling formula and the exact function  !ln n , the  occupation number of 

particles was calculated based on the statistics of Boltzmann distribution for a finite number of 
particles n. The exact analytical expression of occupation number of particles (n i) is found in terms 
of the Lambert W function and is more general than that usually calculated by the standard 

Boltzmann distribution based on the Stirling approximation     nnnn  ln!ln . The new 

expression in the exact and algebraic closed form eliminates the need for the complex iterative 
computation. Its high accuracy is proved by a comparison of calculating occupation number of 
particles (ni) with respective numerical solution. 
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1. INTRODUCTION 
 

The Stirling approximation to  !ln n  is typically 

introduced to physical chemistry students as a 
step in the derivation of the exponential 
Boltzmann distribution. However, naïve 
application of this approximation leads to 
incorrect conclusions. For example student of 
physical chemistry are often introduced to the 
statistical treatment of the occupation number ni 
as given by Boltzmann's distribution equation: 
 

]exp[ iin               (1) 

 
Using Stirling's approximation [1,2] 
  

    nnnn  ln!ln            (2)  

 
The applicability range of Eq. (2) is limited to very 
large values of n, the exponential Boltzmann 

distribution is limited strictly to 1n  and 

applies only for  not too large. However, the 
distribution is used in the literature even for

   and 0n , where Eq. (1) does not be 

appropriate. It is interesting that Stirling’s 
approximation, Eq.(1), fails and the more precise 
Stirling formula, Eq.(3) [2] is required to 
determine the occupation number ni. 
 

     2ln
2

1
ln

2

1
!ln 








 nnnn            (3) 

 
For a finite number of particles, the occupation 
number of particle has been determined by 
Kakorin [3], but no details, analysis or more 
explanation and discussion were made for how 
determining it. 
 
In this paper, basing on the work of Kakorin [3], 
we present more details, analysis and discussion 
to calculate the expression of the occupation 
number ni of particles based on Boltzmann 
statistics for a finite number of particles. We 
compare the obtained result with this obtained by 
usual exponential Boltzamnn statistics using the 

stirling approximation     nnnn  ln!ln . 

 

2. METHODOLOGY  
 
By applying the exact Stirling formula and the 

exact function  !ln n  based on the statistics of 

Boltzmann distribution for a finite number of 
particles n, we calculate the occupation number 

of particles. Analytical expression of ni was 
expressed in terms of the primary branch of the 

Lambert function 0W .  

 
Using numerical method as Newton–Raphson’s 
method, the occupation number of particles was 
also calculated and compared with this obtained 
by applying exact Striling formula. 
  

3. RESULTS AND DISCUSSION 
 
Based on the Boltzmann statistics with a finite 
number of particles n, the expression of 
occupation number ni is [3]  
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where A, represent some constant in the 
Boltzmann statistics. 
 
Eq. (4) can be solved numerically by an iterative 
method. This is not necessary; the exact solution 
of this equation is given by the so-called Lambert 
W-function [4]. This function was postulated to 
solve the equation: 
 

    zzWzW exp              (5) 

 
The Lambert W-function allows the explicit 
solution of entire classes of differential equations, 
which actually only could be solved numerically 
and is experiencing today a renaissance in 
various fields of sciences and engineering [5-12]. 
 
The expression of the occupation number of 
particles is given by: 
  

ii
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Where i is the energy of state (i), kT/1  (k 

is the Boltzmann constant and T is the 
temperature and  is the Lagrange multiplier. 

 
Eq. (6) is a transcendental equation that can be 
solved exactly with the results written in closed 
form in terms of the Lambert W function using 
the approach proposed by Hadj Belgacem [13-
17]. 

 
For further calculation, we introduce the 
abbreviations: 



 
 
 
 

Belgacem; JMSRR, 2(2): 228-233, 2019; Article no.JMSRR.48382 
 
 

 
230 

 

iA               (7) 

 

and 
2
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 We obtain the implicit equation  
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For solving Eq. (9) we suppose that  
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Inserting Eq. (10) into Eq. (9) yields 
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Rearranging Eq. (11) and employing an 
exponential in Eq. (13) 
 

    0ln)(ln)(  zzWzW         (12) 

 

     1ln)(ln)(  zzWzWExp         (13) 

 

    zzExpWzW            (14) 

 

We find that Eq. (14) represents the definition of 
the Lambert W-function, as already established 
in Eq. (5). 
 

Consequently, our supposition in Eq. (10) is 
justified. 
 

The exact solution for the occupation number ni 
is after resubstitution for z and replacing A is 
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The Lambert W-function is a complex and multi-
valued function with an infinite number of 
branches, only two of them having real values. If 

x is real, then for 0
1

 x
e

, there are two 

possible real values of )x(W , as displayed in 

reference [4]. The branch satisfying )(1 xW is 

denoted )x(W0 ; the branch satisfying

1)x(W   is denoted )x(W 1 . Where are 

1)
e

1
(W   and 0)0( W . Both real 

branches )(0 xW and )(1 xW , for x real are 

presented in Fig. 1. 

 
 

Fig. 1. The two branches of the Lambert W function )x(W 1 in blue color and )x(W0 in red 
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Fig. 2. (a) Exponential Boltzmann distribution ni from Eq1versus βi, where i is the energy of 

the state and 
Tk

1
 b) Lambert –Boltzmann distribution ni Eq.14 versus β with the 

primary branch of the Lambert W function 0W  and (c) Lambert–Boltzmann distribution ni Eq.14 

versus βi calculated with the secondary branch of the Lambert W function 1W  
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Fig. 3. The occupation number ni as a function of βi. The dashed curve gives the occupation 
number as calculated from numerical solution. The solid curve gives the present result 

 
For practical application, to find the branch of 

)(xW that correctly describes the evolution of 

the occupation number in additional reasonable 

considerations are required. At the limit when the 

occupation number ni tend to infinity ( in ), 

the expression of the general occupation number 
calculated in this work using the exact striling 
formula must be equal to the usual one 
calculating by using the striling approximation. 
 
Inserting appropriate parameters

 
0

00
2

1
ln,1000

n
nn    in Eq.(14);

 00 ln,1000 nn   in Eq.(1). The 

occupation number can be represented in Fig. 2 

as a function of i where i  is the energy of 

the state and 
Tk

1
 . 

 
To illustrate what kinds of the Lambert W 
function branch's that computes the real value of 
ni. We compare in the Fig. 2 the evolution of the 
general occupation number ni calculate with the 

primary branch 0W  (Fig. 2.a) and with the 

second branch 1W  (Fig. 2.b) using Eq.14 with 

usual one calculating by using the striling 
approximation using Eq.(1) (Fig. 2.c). 
 
The comparison of the general occupation 
number evolution showed in the Figs. (2.a) and 

(2.b) with the usual occupation number Fig. (2.c) 
demonstrate that W0 (x) is the branch that 
appropriately describes the evolution of the 
general occupation number as a function of    

i  

 
To validate the obtained general analytical 
solution of the occupation number, we compare it 
in Fig. 3 with the numerical solution of Eq. (3) 
obtained using the Newton–Raphson’s method. It 
is easily seen that an excellent agreement is 

achieved for all values of the i  . 

 

4. CONCLUSION  
 
In summary, the Lambert W-function was 
successfully used to determine an exact 
analytical solution for calculating the occupation 
number ni of particles in the case of Boltzmann 
statistics for a finite number of particles. The 
exact solution for the occupation number ni was 
expressed in terms of the primary branch of the 

Lambert function 0W . Comparing with numerical 

result shows that the proposed solution is in a 
good agreement. 
 

Practically, this occupation number ni is simple to 
compute since the lambert w-function is readily 
available in standard computational packages 
and can be easily implemented in other 
mathematical formulas, for example to calculate 
the partition function z and the constant volume 

heat capacity vC  in boltzmann statistics. 
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