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Abstract
In a recent work (Halverson et al 2021Mach. Learn.: Sci. Technol. 2 035002), Halverson, Maiti and
Stoner proposed a description of neural networks (NNs) in terms of a Wilsonian effective field
theory. The infinite-width limit is mapped to a free field theory while finite N corrections are taken
into account by interactions (non-Gaussian terms in the action). In this paper, we study two
related aspects of this correspondence. First, we comment on the concepts of locality and
power-counting in this context. Indeed, these usual space-time notions may not hold for NNs
(since inputs can be arbitrary), however, the renormalization group (RG) provides natural notions
of locality and scaling. Moreover, we comment on several subtleties, for example, that data
components may not have a permutation symmetry: in that case, we argue that random tensor
field theories could provide a natural generalization. Second, we improve the perturbative
Wilsonian renormalization from Halverson et al (2021Mach. Learn.: Sci. Technol. 2 035002) by
providing an analysis in terms of the non-perturbative RG using the Wetterich-Morris equation.
An important difference with usual non-perturbative RG analysis is that only the effective infrared
2-point function is known, which requires setting the problem with care. Our aim is to provide a
useful formalism to investigate NNs behavior beyond the large-width limit (i.e. far from Gaussian
limit) in a non-perturbative fashion. A major result of our analysis is that changing the standard
deviation of the NN weight distribution can be interpreted as a renormalization flow in the space
of networks. We focus on translations invariant kernels and provide preliminary numerical
results.
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1. Introduction and outline

Deep learning and neural networks (NNs) [1, 2] have experienced a rapid development in the last decade,
with an ever-increasing number of remarkable applications. In many cases, these systems outperform
humans and ordinary algorithms. However, there are still many challenges to be solved: in particular, most
NNs work as a black box and require a huge number of examples during the learning phases. More generally,
there is no complete theoretical understanding of why deep learning works so well and how to improve it
further. For example, it is not clear how training can be made more efficient and fast, how knowledge can be
transferred to other tasks or how to choose hyperparameters systematically. This lack of reliability poses, in
certain cases, important ethical problems. Indeed, with the growing use of AI for making decisions (for
example, in banking, employment, medicine, military, etc), it is crucial to be able to explain the choices of
the AI in a transparent way [3]. Moreover, having a black box is also a drawback for scientific discovery since
the goal of science is to interpret and explain, and knowledge can grow only from understanding [4]. Our
paper is part of the lively field of explainable AI [5, 6], where physics do have a role to play [7].

A natural path for studying NNs is provided by theoretical physics: it offers an array of tools useful to
describe a wide range of complex systems [8]. In the recent years, evidence has accumulated [9–22] in favor
of a scenario involving a particular form of ‘coarse-graining’, making contact with a familiar tool for
physicists: the Wilsonian renormalization group (RG).

A macroscopic ideal gas is completely described by the ideal gas law, and a macroscopic fluid is well
described by the Navier–Stokes equation. Both equations ignore the microscopic atomic and molecular
interactions and provide a coarse-grained description. This idea was fully developed by Wilson’s RG,
formalizing the general feature that long range behavior of physical systems does not require an
understanding of the nature and interactions of its microscopic building blocks. Through a very impressive
argumentation, Wilson showed that it is possible to explain the apparent universality of physical systems near
critical points from the observation that, up to the accuracy of physical predictions, the specific microscopic
details can be absorbed through a few effective couplings, defining an effective large scale theory. Despite the
fact that the RG was born in the era of critical phenomena, it turned out to be a very general framework,
largely responsible for the success of field theory descriptions of long range distance physics, both in
condensed matter physics and in high energy physics [23–26].

The ability of the RG to explain long range universality can be traced from information geometry
[10, 11, 27–31]. The RG coarse-graining is performed on the eigenvalues of the (free) Fisher information
metric, which is a local version of the Kullback–Leibler (KL) divergence DKL(p||q) (or relative entropy) and
which provides a reasonable measure of distinguishability between two probability distributions p and q
[30]. From coarse graining, and in absence of singular structures, KL divergence decreases, as well as
distinguishability between distributions, as to become smaller than any experimental precision. Beyond this
limit, we cannot distinguish the two distributions, as different as they may have been originally. The ability of
the RG to extract the relevant features from a large set of interacting microscopic degrees of freedom is a
compelling argument for a link with deep learning. In fact, it is natural to expect a relation with any
procedure able to extract relevant features from a massive data set, as it is the case, for instance, in principal
component analysis (PCA), where some recent works stressed such a connection between signal detection
and RG [9–15].

In this paper, we aim at developing further the correspondence between quantum field theory (QFT) and
NNs, called the NN-QFT correspondence [32, 33]. The main objective is to provide a description of the NN
behavior using the non-perturbative RG and the corresponding effective field theory5. This positions our
paper in a growing tradition of papers describing how the behavior of NNs can be understood through a
more and less sophisticated coarse-graining, which can itself be related to a RG. Strong evidence in favor of a
correspondence between RG and deep learning has been stressed for Restricted Boltzmann machines, whose
architecture exhibits similarities with the Ising model (a theoretical model for ferromagnets) [16–22].
Historically, the Ising model was precisely the conceptual cradle of the RG through Kadanoff ’s ‘block-spin’
method, which can be viewed as an elementary version of the general Wilson coarse-graining [34]. The use
of a field theoretical formalism is not a novelty as well [32, 35–40]. In fact, this is expected since physics has
shown that field theories are a general feature for systems involving emergent collective dynamics. For

5 In this paper, we will mostly use both ‘quantum field theory’ (QFT) and ‘effective field theory’ interchangeably, the context makes it
clear if we speak of the microscopic (ultraviolet, UV) or effective theory (low-energy). We are working in Euclidean signature, in which
case the term ‘statistical field theory’ is sometimes used, to make clear that it describes thermal and not quantum fluctuations. However,
we will use QFT for uniformity.
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example, they appeared to provide a good understanding of the qualitative behavior of NNs through the
spin-glass formalism [41, 42].

We follow the correspondence between NN and QFT pioneered by Halverson, Maiti and Stoner [32]. Its
originality with respect to other approaches lies in the observation that, under very general conditions, NN
with infinitely wide layers are described by a Gaussian process (GP) due to central limit theorem [43–51].
Realistic architectures never involve an infinite number of hyperparameters N, and their behavior fails to be
well described by a GP. However, this useful but purely theoretical limit allows approaching the non-GP as a
perturbation from the large N limit, which is assumed to receive 1/N corrections which, for N large enough,
can be computed perturbatively. In [32, 33], the correspondence has been developed in the case of a fully
connected network with a single hidden layer of width N. They developed the field theoretical machinery
necessary to describe NNs (see appendix A for a summary). This includes computing correlation functions
of outputs, obtained in QFT by constructing Green functions from Feynman rules in perturbation theory.
Effective interactions (also called couplings) can then be extracted by comparing the NN correlation
functions and the QFT Green functions. Finally, they introduced a RG flow from a cut-off on the volume of
the input data, from the assumption that the effective field theory must be insensitive to the choice of the
volume, up to a global rescaling of couplings entering in its definition. In the QFT language, this corresponds
to an infrared (IR, large volume) cut-off: a major difference in our paper is that we will use an UV (data
resolution) cut-off (see section 2.1.3).

The relation between different effective models can be translated locally through a set of β-functions
which describe the evolution of couplings when the cut-off changes, with universal features of the theory
emerging from the flow. In this paper, we are aiming at proposing a non-perturbative formalism, based on
the Morris-Wetterich equation [52–56], to investigate the NN-QFT correspondence beyond the perturbative
regime, i.e. beyond the large N regime. This means that our analysis does not requite the coupling constants
to be small and that our equations are given in a 1/N expansion. As mentioned above, our framework differs
from the one used in [32] in that we introduce a true partial integration of the degrees of freedom procedure,
without any assumption on the expected large volume behavior of the corresponding effective field theory.
Among the major differences with respect to the situation with ordinary QFT, the full (effective or IR)
2-point function is known theoretically, including non-Gaussian effects, whereas the free propagator
(microscopic or UV) is not known. This unconventional setting allows going beyond standard limitations of
the non-perturbative framework, in particular to close the infinite hierarchical system of equation describing
the RG flow and keeping the full momentum dependence of the correlation functions following the
Blaizot–Mendez–Wschebor (BMW) method [57–60].

Another unconventional aspect concerns the notions of power-counting and locality, which are
traditionally inherited from the background space-time (which we will call ‘data-space’ in the case of NNs).
In the case of QFT for NNs, such a relation appears as an additional hypothesis that no experience motivates
‘a priori’. Other properties such as rotation and permutation invariances of the point components may not
make sense for NN data. However, recent works in the context of background independent quantum gravity
[61, 62] have shown that the notions of scales and power-counting are more primitive than that of
space-time, and such that locality can be derived from power-counting itself, ensuring moreover that the RG
exists and is well-defined. In this article, we will discuss how these ideas can be relevant for NNs.

A RG can be then constructed by following the standard method, partially integrating on the degrees of
freedom and starting with those associated with the highest scales (UV). However, the situation for the
NN-QFT correspondence is quite different compared to usual studies of the non-perturbative RG: indeed,
we are able to solve exactly the 4-point vertex function while keeping the full momentum-dependence
without approximation on the 2-point function (since it is already known exactly). We can also solve almost
exactly for the other momentum-dependent n-point vertex functions (when two momenta are equal and the
others vanish, we can also find an exact solution without approximation). In this paper, we consider two
versions of the RG. In a first approach, called passive, the notion of scale is fixed by the resolution chosen to
describe the data. In that approach, the standard deviation of the hidden weights, σW , is viewed as a reference
mass scale. The resulting evolution equation provides an explicit realization of equivalence classes of
networks having the same output (up to the machine precision), as the data is coarse-grained. In a second
approach, called active, the RG flow is constructed by viewing σW as a running scale. In such a way, the
equivalence class is between networks having the same output, keeping the data resolution fixed. This implies
that, for fixed N, NNs with different σW can be viewed as belonging to the same RG trajectory. In particular,
this implies that the renormalization flow can be used to make predictions for any σW given the results for
one of them. We illustrate this by describing the behavior of the quartic coupling constant of the effective
field theory and check numerically the flow equations. In this paper, we focus on the analytic result and we
plan to extend the numerical aspects in future works.
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1.1. Outline
In section 2, we discuss some general concepts about the field theories which may be used to describe NNs.
In particular, we comment on the definition of the data-space, IR and UV regimes, (non-)locality and its
consequences on scaling and power-counting. At the end, we describe the passive and active points of views
for the RG. In sections 3 and 4, we derive the passive and active RG flow equations respectively. In
appendix A, we review the numerical simulations from [32] and provide some additional details. Finally,
appendix B contains the details of technical computations.

2. NN-QFT, locality, scaling and RG

In this section, we present the framework of the NN-QFT correspondence proposed in [32, 33]. As explained
in the introduction, we focus on the Gaussian network6 (or Gauss-net) which have a translation invariant
kernel. In this section, we first recall the main ideas of the correspondence (some numerical results from [32]
are reproduced in appendix A).

Then, we discuss the role played by non-local interactions7. In particular, we describe the different ways
to relax locality and how this naturally leads to break the rotation invariance of the data. The most general
QFT in the latter case are called random tensor field theories (or group field theories), which are
generalization of random matrix field theories.

We are also revising the concept of power-counting, preferring a notion intrinsic to the RG compared to
the one used in [32], which is inherited from a background ‘data-space’. In the latter case, a classical scale
dimension is attributed to the data and dimensional analysis is performed by requiring that the action is
dimensionless (such that its exponential can serve as a weight in the path integral). However, it is not clear
how to extend this notion in the presence of non-local interactions. We introduce two notions of scales
which emerge from the analysis: the first is attached to the data and called ‘working precision’, and the second
is attached to the network and called the ‘observation scale’. We consider two versions of the RG, flowing in
these two parameter scales. We conclude the section with a short presentation of the Wetterich-Morris
formalism [52, 53, 63] for non-perturbative RG and a discussion about the RG version considered in the
reference paper [32]. Note that we voluntary use the same notations and conventions to make the
comparison with their results easier.

2.1. Correspondence between neural networks and quantum field theory (NN-QFT)
In [32], the authors proposed a general QFT framework to describe the statistical behavior of NNs, working
in the function-space rather than parameter-space (which can be viewed as a duality [33]). The original
motivation stems from the observation that NNs in the infinite-width limit are described by a random GP
[43]: the latter can also be described by a free (or Gaussian) QFT8. When the width is finite, the random
process is not Gaussian and one can expect the NN to be mapped to an interacting field theory, which has
been checked in [32].

2.1.1. Neural network and experimental Green functions
We consider a fully connected NN fθ,N(x) : fθ,N : Rdin → Rdout with learnable parameters (weights and biases)
θ = (W0,b0,W1,b1), a single hidden layer of width N, and an activation function σ:

fθ,N(x) =W1(σ(W0x+ b0))+ b1, (1)

where the weightsW i and biases bi characterize the affine transformation of each layer and σ acts
element-wise. The weightsW0 andW1 follow centered Gaussian distributionsN (0,σ2

W/din) and
N (0,σ2

W/N) respectively, and both biases b0 and b1 are drawn from centered Gaussian distributions
N (0,σb). The input data x is a din-dimensional vector, while we take dout = 1 for the output data for
simplicity. As a consequence,W0 is a (din,N)-matrix,W1 a (N,1)-matrix, b0 a N-vector, and b1 a scalar. The
Gauss-net activation is slightly peculiar because it acts as an exponential of the layer output normalized by
the data of the previous layer:

x1 ≡ σ(W0x+ b0) =
eW0x+b0√

exp

[
2(σ2

b +
σ2
W

din
x2)

] . (2)

6 The term ‘Gaussian’ refers to the fact that the kernel is a Gaussian kernel, not that we have a GP in the infinite-width limit.
7 They were not considered in the original version of [32] but additional discussion has been added in a subsequent version during the
preparation of this manuscript.
8 We refer to [32] for a gentle introduction to QFT with NNs in mind.
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Finally, we stress that the NN is randomly initialized and that we will not consider the effect of training.
Information on the NN can be extracted by considering correlations of the outputs: they are encoded by

the ‘experimental’ correlation (or Green) functions G(n)
exp [32]:

G(n)
exp(x1, . . . ,xn) = ⟨ fθ,N(x1) · · · fθ,N(xn)⟩, (3)

where the statistical average9 is taken over a large number of NNs with identical N and parameter
distributions. The numerical evaluation of these quantities is explained in appendix A.

2.1.2. Large N: free field theory
NNs fθ,N : Rdin → Rdout with N→∞ are well-described statistically by a Gaussian distribution:

P[ f ] =
1

Z
exp

(
−1

2

ˆ
(Rdin )2

dxdy f(x)Ξ(x,y)f(y)

)
, (4)

where the factor Z ensures that the expression is normalized when integrating over the full functional space:

ˆ
[df ]P[ f ] = 1, (5)

[df ] denoting the path integral measure in functional space and Ξ(x,y) the kinetic operator (Gaussian
kernel). In general, we will omit the subscripts (θ,N) on NN function samples and write simply f.

The origin of this Gaussian behavior in the limit N→∞ can be traced from central limit theorem: since
fθ(x) is formally a sum of N identically distributed random terms which self-average. The function f (x) splits
into two contributions:

f(x) = fW(x)+ fb(x), (6)

where fb(x)≡ b1 being essentiallyN independent variables and following the Gaussian lawN (0,σb), whereas
fW(x) goes toward a Gaussian distribution only for large N. Formally, it reads as:

fW(x) :=W1x1, (7)

where x1 is given by (2) (such that fW depends onW0,W1 and b0). As stated above, for large N, one expects
that such a quantity self-averages around its mean, and thus that fluctuations are small:

⟨ fW fW⟩ ∼
N→∞

⟨ fW⟩⟨ fW⟩= 0, (8)

where the last equality follows from the assumptions that initial distributions for θ are centered and
non-correlated. Hence, the statistical properties of fW are essentially given by a centered Gaussian
distribution, up to 1/N corrections. Obviously, the random nature of fW is inherited from the initial
parameter distribution, however the asymptotic Gaussian behavior arises from the law of large numbers.

The 2-point correlation (or Green) function:

K(x,y)≡
ˆ
[df ]P[ f ]f(x)f(y), (9)

is the inverse of the Gaussian kernel Ξ(x,y) which appears in the free action (4):

ˆ
dzΞ(x,z)K(z,y) = δ(x− y). (10)

However, according to (6), it is also possible to decompose K as:

K(x,y) = KW(x,y)+Kb(x,y), Kb(x,y) = σ2
b , (11)

where KW is the 2-point function associated to fW . It corresponds to the Fisher information metric [27, 28]
in the information geometry language, and is fixed from the choice of the activation function.

9 The notation ⟨·⟩ should not be confused with the expectation value in QFT: we will always use it to denote the statistical average over a
set of networks.

6
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In this paper, we essentially focus on translation invariant kernels KW(x,y)≡ KW(|x− y|), which is
achieved by the Gauss-net architecture (2), corresponding to the kernel:

KW(|x− y|) = σ2
W e−

σ2
W

2din
|x−y|2

, (12)

where |x− y| :=
√∑

i(x− y)2i denotes the ordinary Euclidean distance between x and y.
In field theory language, the kernel enters in the definition of the classical kinetic action10 (i.e. the

log-likelihood in probability theory):

Skin[ f ] :=
1

2

ˆ
(Rdin )2

dxdy f(x)Ξ(x,y)f(y), (13)

the corresponding probability distribution being given by the exponential law P[ f ]∝ e−Skin[ f ] in (4). The
n-point correlation (or Green) functions are defined as:

G(n)
0 (x1, . . . ,xn)≡ Z−1

ˆ
[df ]e−Skin[ f ]f(x1) · · · f(xn). (14)

In the free theory, G(n)
0 is completely determined in terms of G2(x,y) = K(x,y) through Wick’s theorem, and

vanishes for n odd [32]. Hence, this implies that:

G(n)
exp(x1, . . . ,xn) ∼

N→∞
G(n)
0 (x1, . . . ,xn). (15)

2.1.3. Data-space and momentum space
In this subsection, we discuss some definitions related to the data-space11 corresponding to the NN input x,
and how they differ from [32].

Continuity and infinity in computer science exist only as idealizations. First, any real number x ∈ R is
represented numerically by a decimal number, bounded in precision by the number of bits used to encode it.
For instance, if the maximal number of decimals is n0, two numbers x and x+ 10−m cannot be absolutely
distinguished form> n0. To be more realistic, we should see the data-space Rdin as a lattice of step
a0 = 10−n0 rather than a continuum manifold. The lattice spacing a0 provides what physicists call an UV
cut-off. Varying this parameter amounts to changing the data resolution, in full similarity with spacetime
resolution in usual QFT. Second, computers cannot store an infinite amount of information. For this reason,
it cannot handle infinite numbers (except as special data types and formal rules) and it is necessary to restrict
the data to a finite interval x ∈ [−L/2,L/2]12. Hence, we consider the data-space to be a (2 N0)

din square
lattice with spacing a0, N0 ∈ N, and total hypervolume:

V = Ldin , L := 2a0N0. (16)

It is generally more convenient to work in Fourier (or momentum) space. The allowed momenta
p= (p1, . . . ,pdin) lie in the first Brillouin region:

pi =
2πni
L

, ni ∈ ZN0 . (17)

Note that we assume periodic boundary conditions. This is not a problem for L large enough; for small L13,
we can simply repeat the data set a large number of times to obtain a large enough effective volume to make
the boundary conditions irrelevant.

In the rest of this paper, we use the following definitions:

Definition 1. We call (2N0)
din the discrete volume and a0 the working precision.

10 Note that in this paper we choose the subscript kin for ‘kinetic’, more familiar to physicist rather than G for ‘Gaussian’, used in
the [32].
11 As we will see, its properties may be sufficiently different from the usual space of positions—spacetime—appearing in usual QFT to
find another name.
12 In most of [32], the large-volume (what we call IR) cut-off in data-space L is denoted as 2 Λ. However, we keep this notation for the
large-volume cut-off in momentum space.
13 We will precise ‘small with respect to what’ in a moment.

7
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Note that (2N0)
din also counts the number of states in the first Brillouin region. In this discrete setting, we

can write the Fourier series of the network f (x) (for x ∈ (aZN0)
din) as:

f(x) =:
1

Ndin
0

∑
p

g(p)eipx, (18)

the basis functions eipx being normalized such that
∑

x e
i(p1−p2)x = N0δp1p2 . Note that (18) holds for any

discrete function on the lattice. In the continuum limit, for small a0 and N0 large such that L remains fixed,
discrete sums can be replaced by integrals. Moreover, for volume large enough, integrals becomes standard
Fourier transform. We call this limit the thermodynamic limit following the standard terminology in physics,
and we focus on this regime in our investigations. Taking the Fourier transform of the 2-point function:

K̃(p) =
1

(2π)d

ˆ
dxK(x)e−ipx, (19)

where px :=
∑din

i=1 pixi, we get for (12)
14:

K̃(p) = (σ2
W)

1−din/2

(
din
2π

)din/2

e
− din

2σ2
W
p2

. (20)

Note that in this continuum approximation, the Dirac delta δ(p) has to be understood as a shorthand
notation for a Kronecker delta (2π)−dinVδp0. Translation invariance is crucial to obtain a kernel (20) which
depends on a single momentum, and reflection invariance implies that it must be a function of p2. It would
be interesting to understand how to generalize our computations for kernels which are not translation
invariant [32].

For small p2, we may expand K̃(p) in power of p2,

K̃(p) = (σ2
W)

1−din/2

(
din
2π

)din/2

− din
2
(σ2

W)
−din/2

(
din
2π

)din/2

p2 +O(p4). (21)

Up toO(p4) corrections, the propagator looks like the canonical propagator of a free scalar field theory:

K̃(p) =
1

m2
0 +Z0p2 +O(p4)

, (22)

where:

m2
0 = (σ2

W)
din/2−1

(
din
2π

)−din/2

, Z0 =
din
2
(σ2

W)
din/2−2

(
din
2π

)−din/2

. (23)

In the QFT terminology, Z0 andm2
0 are respectively the wave function renormalization and bare mass. One

can rescale the field to to set Z0 = 1, in which case the mass becomes:

m̄2
0 = Z−1

0 m2
0 =

2σ2
W

din
. (24)

We adopt the following definition:

Definition 2. The mass m̄2
0 defines the typical mass scale and its inverse defines the (IR) correlation length ξ,

or the typical observation scale:

ξ2 := din/(2σ
2
W). (25)

Note that the large volume limit is defined with respect to this correlation length, i.e. L≫ ξ. Beside the
existence of an intrinsic length scale, the system the propagator at large distance behaves like (m̄2

0 + p2)−1.
Assigning the label x (position space) to the original data and p (momentum space) to the Fourier

conjugate may seem arbitrary. Indeed, while the machine precision provides a natural UV cut-off and an
associated identification of the data-space as position space (since UV corresponds to small distances in that
space), signals in Fourier space are also represented in the computer up to the machine precision. However,
in that case, using the machine precision as a UV cut-off would not match the usual intuition in QFT. Given
a translation-invariant kernel, another possibility is to identify the momentum space as the space where the
propagator is diagonal, such that the propagator in position space depends on the distance |x− x ′|.

14 This type of kinetic term is reminiscent of p-adic string theory [64, 65].
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2.1.4. Finite-N corrections and interactions
For a GP, as we have seen earlier, correlation functions G(2n) for n> 1 can be decomposed as a sum of
product of 2-point functions thanks to the Wick theorem [23]. For N large but finite, the distribution is not
exactly Gaussian, and the correlation functions do not match with Gaussian predictions.

The deviation of the QFT and experimental correlation functions from the Gaussian case are denoted as:

∆G(n)
exp := G(n)

exp −G(n)
0 , ∆G(n) := G(n) −G(n)

0 . (26)

Note that G(n)
0 are still the large N Green functions defined in (14). Importantly, we identify the exact 2-point

function G(2) with the kernel K which equals G(2)
0 . Since it contains (quantum) corrections due to the

interactions, the free 2-point Green function computed from the kinetic term only is not known (in standard
QFT, the converse is true, see section 2.3.2 for a discussion). We will see in section 2.2.3 that connected
functions∆G(2n)

c behaves as:

∆G(2n)
c =O(1/Nn−1) , ∀n, (27)

which has also been investigated analytically and numerically in [32] (see also appendix A)15. This scaling is
consistent with the fact that the exact 2-point function is independent of N.

Qualitatively, this is reminiscent of what happens for the Ising model in large dimension. The local
magnetization self-averages because the number of closest neighbors is large, and the statistical properties
remain (quasi)-Gaussian. For space dimension d large but finite, thermodynamical quantities can be
computed as power series in 1/d, which do not affect universal quantities, as soon as d> 4. For d< 4 however,
the decoupling of physical scales breaks down and the Gaussian approximation is not suitable [24].

The same scenario is expected to be true for NNs. For finite N, the distribution does not obey Wick
theorem, and correlations functions receive contributions which do not reduce to products of 2-point
functions, and the classical action must include non-Gaussian contributions, i.e. products of f of degrees
higher than 2. However, as soon as N remains large enough, deviations from the Gaussian behavior are
expected to remain small. In the classical action, these corrections materialize as product ofm fields (m> 2),
that we call interactions:

S[ f ] = S ′
kin[ f ] + Sint[ f ], (28)

where S ′
kin[ f ] is a new free action of the form (13). We follow the orthodox assumption in field theory that S

is polynomial, and we denote generally as couplings the monomials. The correlation functions are computed
using (14) by replacing Skin[ f ] with S[ f ]. But, since the interacting action Sint[ f ] is built from cubic and higher
powers of f, this generally prevents from computing the path integral exactly, and one has to resort to a
perturbative expansion encoded in terms of Feynman graphs [32]. The form of the interactions is discussed
in the next subsection. For the rest of this paper, we discard the contribution f b in (6) from our analysis, and
omit the subscriptW.

2.2. Locality, scaling(s), and power-counting
In this subsection, we precise the class of interactions which are assumed to suitably reproduce the
non-Gaussian properties of correlations. Moreover, we discuss the scaling behaviors, especially relevant for
the RG investigations in the next section.

2.2.1. The theory space
The set of allowed couplings defines the theory space. They are generally guided by physical arguments, the
symmetries of the system, and fundamental assumptions about the physical laws. This is especially the case
for fundamental physics, where the expected properties of the space-time background play a key role. In
turn, the structure of space-time is itself a consequence of the interactions between physical matter16. Indeed,
if we are able to say that something is ‘here’, this is because we can interact with this thing. In words, a
statement such that ‘the field must interact locally’ is physically equivalent to ‘locality is defined by the
interactions of fields’. In other words, space-time in physics is more that a set of din coordinates x ∈ Rdin . It is
equipped with a group structure, the Poincaré group, which dictates how the coordinates can be transformed
from one to the other. As the history of the relativity theory shows [66–68], these properties are essentially
consequences of interactions between light and matter.

15 The original version [32] did not contain this discussion which has been added while the present manuscript was in preparation.
16 This point of view is named ‘relational’ in physics, and is essentially the one used in quantum theory of gravity [66].
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In the QFT framework, the role of the background space is played by Rdin . In [32], the authors adopt a
conservative approach for most of their analysis, building the couplings as products of fields at the same
point x ∈ Rdin :

Sint =
∑
n

gn

ˆ
Rdin

dx
(
f(x)
)n
. (29)

However, this makes various assumptions which may not be valid for a general NN QFT. For this reason, we
will make them explicit and explain how to gradually lift them to consider the most general QFT. Deciding
which assumptions to use should be dictated by numerical evidences: in particular, it was found in [32] that
(29) is sufficient for the activation functions and range of input parameters considered there (see appendix A
for more details). This approach can be considered as NN phenomenology, in the sense that we are writing a
model to match observations, but we can also use this model to check theoretical facts such as dualities
[33, 69, 70].

The first assumption is locality of the interaction: the fields appearing in the monomial f(x)n can be taken
at different points (for simplicity, we consider a single coupling in Sint):

Sint = g

ˆ
dx1 · · ·dxn f(x1) · · · f(xn). (30)

This breaks locality because fields at different points in space(time) can interact together. In fact, since g is a
constant, this happens for arbitrarily large distances. Note that this preserves translation invariance
xi → xi + a.

The next natural step is to replace g by a coupling function, i.e. a function of space but independent of the
field. Going back to (29) where all fields are at the same points, we can write a local action with a coupling
function:

Sint =

ˆ
dxg(x)

(
f(x)
)n
. (31)

It was argued in [32] from technical naturalness that g(x) must be approximately constant since a coupling
function g(x) breaks the translation invariance of the action. However, this is correct only when assuming
locality of the action: replacing g by a coupling function in (30) gives the non-local action [26]:

Sint =

ˆ
dx1 · · ·dxn g(x1, . . . ,xn)f(x1) · · · f(xn). (32)

However, translation invariance can be preserved if g depends only on the distances between the points:

g(x1, . . . ,xn) = g(x1 − x2, . . . ,x1 − xn, . . .xn−1 − xn). (33)

Moreover, having a coupling functions gives more control on the interaction region, for example, by
restricting the non-locality to a small region. For instance, we can set g(x1, . . .xn) = 0 if |xi − xj|> ℓ for any
pair (i, j). This allows representing non-locality by derivatives in momentum space and to show that they are
subleading in the deep IR. Simple non-local models of this form have been considered in [32].

A special type of such a non-local interaction is obtained by smearing the fields (only in the interactions):
in (29), we can replace the field f (x) by another f̃(x) given by a convolution with a kernel κ(x,y) [71–73]:

f̃(x) :=

ˆ
dyκ(x,y)f(y), (34)

such that

Sint = g

ˆ
dx
(̃
f(x)
)n

= g

ˆ
dxdy1 · · ·dynκ(x,y1) · · ·κ(x,yn) f(y1) · · · f(yn). (35)

In order for this to make sense, the Fourier transform of the kernel κ(x,y)must be an entire analytic
function (with rapid decay if one wants to ensure UV finiteness). This corresponds to a coupling function:

g(x1, . . . ,xn) = g

ˆ
dx

n∏
i=1

κ(x,x1). (36)

Smeared fields naturally appear in string theory and are responsible for its well-behaved UV behavior [74,
75]. In fact, for the Gauss-net, rescaling the field f to remove the exponential from the kinetic term (20) is
equivalent to smearing the field (as pointed out earlier by comparing with the p-adic string [64, 65]).
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There is a final assumption in all the previous interactions we wrote: that all components of x (which is a
din-dimensional vector) are homogeneous. First, this means that coordinates can be added/subtracted to
each other. Second, this also implies that the role played by the ith coordinate can be played by the jth, or by
any linear combination of the coordinates. Physically, this means that the previous interactions have a O(din)
symmetry (the Euclidean rotation group, or the Lorentz group in Lorentzian signature). Together with
translations (if present17) xi → xi + a, this builds the din-dimensional Euclidean group
Is(din) = Rdin ⋊O(din) (or Poincaré group in Lorentzian signature), which leaves the Euclidean distance
invariant. This is why we often write f (x) instead of f(x1, . . . ,xdin) where x= (x1, . . . ,xdin).

However, it is not clear a priori that the data-space possesses this symmetry: it may not be possible to
exchange two data components or even consider linear combinations if the components are not
homogeneous. Despite the fact that the free theory supports such a symmetry, the rotational invariance has
no meaning for a NN in general. Moreover, symmetries of the free theory can be broken by interactions,
which are necessary to fully characterize the system. Conditions under which input and output symmetries
can be present has been analyzed in [33]. In general, one can start by assuming no symmetry in order to
describe the most general model, and then adapt to what the numerical experiments are indicating.

Hence, we need to consider fields for which each component is independent: this amounts to interpreting
f (x) as a field over din independent copies of R, meaning that each of the din components is independent and
cannot be transformed into the others. Given that there are several fields, this means that the ith component
of a given point can be inserted only in the ith argument of a field, however, it is not necessary to use all
components of a single point in a single field. Obviously, this expression is non-local because the field is
evaluated for components corresponding to different points. For example, for din = 3, one can write the
following cubic interaction:

Sint = g

ˆ
dxdydz f(x1,y2,z3)f(y1,z2,x3)f(z1,x2,y3), (37)

where xi, yi and zi are the components of the 3-dimensional points x, y and z. Note that nothing prevents to
use only two points, for example setting y= z and integrating only over x and y, or more generally to repeat
the same component in any number of fields (for an early example, see [76]).

Such general theories are too wild and it is hard to make sense of them. A controllable subclass is
provided by random tensor field theories [77]. In this case, the fields are tensors, each component of the
positions being seen as a (continuous) index and indices can be contracted pairwise only (which is achieved
by integrating over the component, since the index is continuous), such that a given component can appear
at most twice. An intuitive way to represent it is to assign a color to each component, and Feynman diagrams
can be written in terms of strand graphs (generalizing ribbon graphs from matrix models). For instance, a
possible quartic interaction for din = 3 is:

Sint = g

ˆ
d3xd3yf(x1,x2,x3)f(x1,y2,y3)f(y1,y2,y3)f(y1,x2,x3). (38)

We will see in the next section that tensor field theories are particularly interesting in the RG approach
because, under some additional conditions, they possess a natural background-independent power-counting
(see next subsection).

We conclude this section by clarifying a subtlety concerning QFT in curved spaces. In this case, the
Euclidean (or Poincaré) group is not a global symmetry (symmetries of the action are given by the isometry
group of the background space) and one may ask what is the difference with tensor field theories. The point
is that this group is still a local symmetry (general relativity can be seen as gauging the Poincaré group) such
that the properties discussed above continue to hold. Indeed, one can always consider the tangent space
associated to a point: since it is isomorphic to flat space, it means that the coordinates are still homogeneous.

2.2.2. Λ-scaling and power-counting
We are aiming to construct a field theory which admits a well-defined RG flow. In standard QFT, the
rigorous construction of such a flow requires essentially three basics ingredients: (1) a scale decomposition,
(2) a locality principle, (3) a power-counting.

The scale decomposition is the first ingredient to construct slices, and then to define a partial integration
procedure. Power-counting and locality, in turn, are essential to understand the notions of effective
couplings, i.e. how Feynman graphs can be replaced by an effective vertex together with a slice-dependent
coupling. As long as we are endowed with Rdin as a background space, all of these notions are obvious. Scale

17 This is a property of the kernel, but usual activation functions do not seem to provide it [32].
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decomposition is intuitively related with the notion of metric distance, locality and non-locality are defined
with respect to the background itself, and power-counting is related to dimensionality as well. Indeed, the
existence of an extrinsic length scale and the requirement that the classical action S is dimensionless, to give
meaning to the exponential e−S, allow fixing the dimensions (in terms of the length scale unit) of the
couplings appearing in the classical action. This is the choice made in [32] done. Assuming [dx]x = 1, where
[Q]x denotes the dimension of the quantity Q in units of x, they were able to fix the dimension of couplings
like (29),

[δS(n)in ]x = 0 ⇔ [g]x =−din −
n[K]x
2

. (39)

We call it Λ-scaling such a scaling, for some reference scale Λ having (x)-dimension 1. However, from the
discussion above, we can be a little puzzled by the fact of assigning a physical dimension to the variable x, and
to truly view Rdin as a background space. Rather, we adopt the minimal point of view considering it only as a
configuration space, without dimension. Sacrificing the background space then makes the issues of scale,
locality and power-counting less intuitive. The discussion in section 2.1.3 shows that the theory has a
canonical notion of scale, given by the Fourier modes (spectrum) of the propagator. Regarding the notions of
locality and power-counting, the difficulty is quite similar to that encountered in canonical approaches to
quantum gravity, where space-time and background metric disappear [61]. In this context, a clever solution
was found, which in some sense defines the power-counting from a locality principle, starting from the
observation that standard locality in field theory can be algebraically translated as the ability of connected
Feynman diagrams to be contracted to a point. Locality can then be defined algebraically from the
requirement that, at least for some leading order sector, such a contraction procedure exists. A recent
example, arising from quantum gravity models is provided by tensorial field theories [62, 78, 79]. In these
theories, interactions are non-local in the usual sense (from the point of view of the configuration space) but,
for some of them, the only divergences come from a sub-family of Feynman diagrams (in general the
so-calledmelonic diagrams), which is contractible to an elementary vertex compatible with some internal
symmetry defining the tensorial interactions themselves. Interactions having these properties are then said to
be local. In turn, graphs admitting such a contraction property have been shown to admit a well-defined
power-counting. The reason for this is that, to be well-defined, a power-counting requires that the existence
of a family of Feynman graphs having the same behavior with respect to some cut-off Λ. If, order by order in
the perturbative series, quantum corrections have different scaling behavior with respect to Λ, no
power-counting exists. The existence of a contraction procedure allows defining the relative scaling of the
various terms entering in the classical action with respect to Λ, such that there exists non-vanishing leading
sectors of the perturbative expansion which have the same behavior with respect to Λ.

Let us illustrate heuristically on a simple example how contractibility and power-counting allows fixing
the scaling dimension of couplings. Consider the following classical action:

S[ϕ] =

ˆ
dx

[
1

2
ϕ(x)(−∆+m2)ϕ(x)+ gϕ4(x)

]
, (40)

describing the scalar field ϕ : Rd → R, and where∆ denotes the standard Laplacian. It is moreover local in
the usual sense. For g small enough, quantum corrections can be computed using standard perturbation
theory. The first contribution to the effective mass δ(1)m2 arise from the following integral in Fourier space
(the symmetry factors are irrelevant for our discussion):

δ(1)m2 ∝ g

ˆ
dp

p2 +m2
∝ gΛd−2, (41)

for some cut-off Λ for large momenta. In the same way, the first correction for g, say δ(2)g involves the
following integral:

δ(2)g∝ g2
ˆ

dp

(p2 +m2)2
∝ g2 Λd−4, (42)

the upper index referring to the number of vertices involved in the Feynman diagram. Now, to obtain a
well-defined power-counting, the correction for g has to scale with Λ in the same way as g itself. This is
solved by g∼ Λ4−d, and we say that the Λ-scaling of g is [g]Λ = 4− d. This moreover implies δm2 ∼ Λ2, and
thus [m2]Λ = 2. Now, we have to check that it is coherent to all orders of the perturbative expansion. To this
end, let us consider a Feynman graph GV, of order V contributing to the perturbative expansion through the
amplitudeAGV ∼ gVΛω(GV). Contracting along a spanning tree TV ⊂ GV, we reduce the original number of
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propagator edges L to L−V+ 1, and the resulting graph looks like an effective (local) vertex, having
L−V+ 1 loops of length one (tadpoles). Each tadpole behaves like

´
dp/(p2 +m2), and thus scales as Λd−2.

The divergent degree for the contracted graph GV\TV is therefore:

ω(GV\TV) = (d− 2)(L−V+ 1). (43)

Because the contraction procedure removes V − 1 propagator edges, it increases ω(GV) by 2(V− 1):
ω(GV\TV) = ω(GV)+ 2(V− 1). Finally, because the interaction is quartic, we have the relation 2L= 4V−N,
N being the number of external edges. Finally, we get:

ω(GV) = (d− 4)V+ 2+(d− 2)

(
1− N

2

)
. (44)

Each vertex contributes a factor Λd−4, and the scaling g∼ Λ4−d ensures that all the quantum corrections
have the same scaling. Moreover, setting N = 2, we get ω= 2, in agreement with the one-loop scaling
dimension for mass.

Obviously, because this theory is local in the usual sense, the derived scaling dimensions are exactly the
same as the one derived from the standard dimensional analysis of the classical action. The two methods
however do not coincide for non-local interactions such that (38). We argue that this more abstract way to
think about locality, scaling and power-counting is more appropriate in a context where the construction of
the theory space is not guided by experimental evidences, such that it seems more appropriate to work from
the outset within a sufficiently broad framework to accommodate future developments in formalism.
However, the exploration of these aspects for NNs is beyond the scope of this paper, since standard locality
seems to hold for the Gauss-net kernel [32].

2.2.3. N-scaling
There exists another scaling dimension, called N-scaling, associated to the behavior of correlation functions
with respect to the width N of the hidden layer. The Gaussian universality for large N ensures that the
couplings gn behave as gn ∼ N−α(n) for some positive function α(n).

The computation can be done by returning to the definition (7) and using the fact thatW1 follows a
centered Gaussian distribution with variance σ2

W/N. For instance, we find:

⟨ f(x)f(y)⟩=
N∑

i,j=1

⟨W(ik)
1 W( jk))

1 ⟩⟨x(i)1 y( j)1 ⟩= σ2
W

N

∑
i

⟨x(i)1 y(i)1 ⟩, (45)

which is of order 1. The computation of higher correlation functions can be done using a similar strategy,

from the assumptions that the x(i)1 with different index i are statistically independent variables. This in
particular ensures that:

⟨x(i)1 x(i)1 x( j)1 x( j)1 ⟩ ∼ ⟨x(i)1 x(i)1 ⟩⟨x( j)1 x( j)1 ⟩, (46)

from this observation, a tedious calculation which is given in [32] shows that the connected 4-point function

G(4)
c (x1,x2,x3,x4) has to scale as 1/N, and more generally that α(n) = n/2− 1.
This analytic result also shows the limitations of the approach. Indeed, we expect that a more

fundamental method will be able to predict the weights of the interactions. Moreover, the derivation assumes

the relation (46), and thus the independence of the x(i)1 having different indices i, but such an assumption
seems to be in conflict with an interaction such that (29), which morally must introduce couplings mixing
different outputs from the definition (7) of fW . One may expect that these difficulties could be solved by
working with a random vector of sizeN, with components φi(x) rather than with the function fW(x), defining
it as an observable fW(x) := ⟨φi⟩ i.e. the vacuum of the corresponding theory. However, the construction of
such a theory is going beyond the scope of this paper, and we plan to investigate it in a forthcoming work.

2.3. Renormalization group
2.3.1. The Wilson approach
The RG is probably one of the most important concepts discovered in physics during the last century and
forms together with field theory the reference framework of modern physics, from condensed matter to high
energies. Pioneered in the works of Wilson and Kadanoff [34, 80–82], RG is based on the idea of organizing
the theory according to length scales, integrating out short distance degrees of freedom following a recursive
procedure called coarse-graining and providing an effective description for the long distance degrees of
freedom, through an effective action where microscopic interactions are hidden in effective interactions.
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Note that RG is in fact a semi-group, which is non-invertible. Thus at each step, information is lost, and RG
can be viewed as a systematic procedure to extract large scale relevant features.

To illustrate the physics underlying the Wilson procedure, and before making contact with NN field
theory, let us consider a physical system made of a single real scalar field ϕ whose configuration probability
follows the exponential form p[ϕ] = e−S[ϕ], for some classical action S[ϕ]. To have a concrete example in
mind, we can take for ϕ the real field described by the classical action (40). All the statistical properties of the
distribution can be derived from the generating functional (partition function):

Z[ j] =

ˆ
[dϕ]e−S[ϕ]+

´
dx j(x)ϕ(x). (47)

This integral being over all configurations for ϕ(x), all the degrees of freedom are integrated out in one step.
Equation (47) provides a canonical definition of what is microscopic and what is macroscopic, two limits
that we conventionally call UV and IR:

(a) In the UV limit, no fluctuations are integrated out. The field configurations are therefore fixed from the
extrema of the classical action S.

(b) In the IR limit, all fluctuations are integrated out. The configurations are fixed by a new action Γ, called
effective action.

The effective action Γ is in turn defined as the Legendre transform of the free energyW[ j] := lnZ[ j],

W[ j] +Γ[Ψ] =

ˆ
dx j(x)Ψ(x), (48)

the classical fieldΨ being defined asΨ(x) := δW/δj(x).
The RG is nothing but a path between these two boundaries. It is constructed by partially integrating out

the degrees of freedom building the field ϕ. Note that such a partial integration procedure is never arbitrary,
and the Wilson RG assumes the existence of a canonical slicing s= {s1, s2, · · · , s∞}18 in the configuration
space of elementary degrees of freedom, allowing to integrate partially following a preferred order. In
general, this slicing is provided by the spectral distribution µ(E), E ∈ R of the UV 2-point function for an
exponential family like (47): si ⊂ µ(E). In fact, the 2-point function can be identified with the Fisher
information metric along the constrained space with fixed couplings. This gives a connection between RG
and information geometry [31] because of the regularity property of the Fisher metric, and in absence of
singular structures, distance between probability distributions has to be reduced with coarse-graining,
explaining the power of RG to discuss of universality in physics [24]. Integrating all the degrees of freedom in
the first slice s1 leads to an effective model with classical action S′ which defines a new effective physics where
effects coming from degrees of freedom in the first slice are hidden in effective interactions. Now, integrating
the slice s2, we obtain a new classical action S′′ and so on. Such a partial integration (up to a global rescaling
of fields to reach a fixed point) is called a RG transformation, and the chain of RG transformations describes a
‘move’ in the interior of the theory space:

S→ S ′ → S ′ ′ → ·· · , (49)

bounded by UV and IR effective physics (figure 1).
Let us illustrate how that works on the concrete example of the scalar field ϕ described by action (40). In

that case, µ(E) corresponds to the spectrum of the Laplacian∆, whose eigenmodes are Fourier modes, and
E≡ p. Assuming continuity of the spectrum, we can consider infinitesimal coarse-graining, integrating out
slices of infinitesimal thickness. This leads to a differential equation describing how the couplings change as
the reference scale changes. Formally, this can be done as follows. We assume the existence of an upper
bound for p, say Λ, and we call µΛ(p) the spectrum of the free 2-point function with cut-off Λ, KΛ(p). As the
cut-off Λmoves, degrees of freedom are added or removed from the spectrum. Thus, let us consider the bare
action ‘at scale Λ’:

SΛ[ϕ] =
1

2

ˆ
µ(p)dpϕ(p)K−1

Λ (p)ϕ(−p)+VΛ[ϕ], (50)

where V[ϕ] includes interactions following our definition of section 2.1. Now let us consider the running
cut-off Λ(s) = sΛ, for s ∈ [0,1], which interpolate between the UV scale s= 1, and IR scale s= 0. If KΛ(s)(E) is
at least C(1) in s, we can consider the variation at first order from s to s ′ = s+ δ:

18 The notation s∞ simply denotes the last slice.
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Figure 1. The RG trajectory into the theory space, from UV to IR physics.

KΛ(s)(p) = KΛ(s ′)(p)+∆Λ(s)(p)δ. (51)

The following decomposition can be translated as a partial integration from the original partition function
using the functional identity:

ˆ
[dϕdχ]e−S̃Λ(s ′)[ϕ,χ] =

(
det∆Λ(s) detKΛ(s ′)

detKΛ(s)

)1/2 ˆ
[dϕ]e−SΛ(s)[ϕ], (52)

where:

S̃Λ(s ′)[ϕ,χ] =
1

2

ˆ
µ(p)dp

(
ϕ(p)K−1

Λ(s ′)(p)ϕ(−p)+χ(p)∆−1
Λ(s)δ

−1χ(−p)
)
+VΛ(s)[ϕ+χ], (53)

and χ denotes the degrees of freedom integrated out. Indeed, defining:

e−ṼΛ(s ′)[ϕ] := (det∆Λ(s))
−1/2

ˆ
[dχ]e−

1
2

´
µ(p)dpχ(p)∆−1

Λ(s)
δ−1χ(−p)−VΛ(s)[ϕ+χ]

, (54)

and:

SΛ(s ′)[ϕ] =
1

2

ˆ
µ(p)dpϕ(p)K−1

Λ(s ′)(p)ϕ(−p)+ ṼΛ(s ′)[ϕ], (55)

we show that the identity (52) can be rewritten as:

ˆ
[dϕ]e−SΛ(s ′)[ϕ] =

(
detKΛ(s ′)

detKΛ(s)

)1/2ˆ
[dϕ]e−SΛ(s)[ϕ]. (56)

The classical action at scale Λ(s ′) formally looks like the action at the scale Λ(s). What is different between
them is the interaction, which comes at scale Λ(s ′) from a partial integration over the field χ. The
transformation (54) can be translated in a differential equation for δ small enough. Indeed, in this limit, the
modes χ have a large mass, and can be treated perturbatively. Thus, expanding VΛ(s)[ϕ+χ] in powers of χ
and keeping only terms of order 2, we get Polchinski’s equation [80]:

Λ
dṼΛ

dΛ

∣∣∣∣
Λ=Λ(s)

=−1

2

ˆ
dpµ(p)∆Λ(s)(p)

( δ2 ṼΛ(s)

δϕ(p)δϕ(−p)
−

δṼΛ(s)

δϕ(p)

δṼΛ(s)

δϕ(−p)

)
. (57)

This equation is formally ‘exact’. However, this has the reputation to be very hard to solve for many reasons.
The first one is that it takes place in a functional space of infinite dimension. If we decide to work in a
reduced phase space, taking into account only the most relevant interactions, difficulties appear, instabilities
with respect to the considered truncation appear as soon as we try to get beyond the perturbative sector,
which is precisely what we are aiming at in this paper. For this reason, and as it is the case for the largest part
of non-perturbative investigations in the literature [52, 53, 56, 63, 83–85], we will prefer to use the Wetterich
formalism, better for dealing with non-perturbative approximations. We will discuss this method in the next
section.

15



Mach. Learn.: Sci. Technol. 3 (2022) 015027 H Erbin et al

2.3.2. Renormalization group(s) for the NN-QFT
The analogy between NNs and RG is evident: both are aiming at extracting relevant features from a massive
number of degrees of freedom. RG shows that microscopic details can be ignored to describe long distance
physics, and that microscopic theories can be indistinguishable from their common large distance properties.
Extracting regularities from large sets of data is exactly what machine learning does; and, as we recalled in the
introduction, the question of the relevance of the RG in artificial intelligence is growing in the literature
[16–20]. However, the effective field theory that we presented in the first part offers a new framework to
discuss aspects related to the RG in the study of the behavior of NNs [32]. As the previous section stressed
out, the field theory that we consider exhibits strong similarities with theories usually considered by
physicists: the long distance (i.e. large volume, small momenta) limit (22) of the free propagator being the
same as for the usual scalar field ϕ described by the action (40). This formal similarity will serve as a guide in
the construction of the RG, and it is very tempting to carry out a coarse-graining in momenta, exactly as for
the scalar field ϕ in the previous section. We will discuss two different coarse-graining strategies which we
call respectively passive and active RGs. But before we go into them in detail, let us make a few general
remarks about what distinguishes this NN field theory from ordinary theories.

In the standard scenario, what is known is the UV theory i.e. the classical action. This action itself is
viewed as an effective description, valid at some fundamental scale and ignoring the details about nature and
physics of microscopic degrees of freedom underlying the physical world. The choice of the classical action is
constrained by predictivity (which promotes just-renormalizable theories), consistency with quantum effects
(compensation of anomalies in gauge theories, for instance), and the effective structures at the scale at which
the theory is defined, which generally implies some symmetries (rotation, reflection, gauge invariance, etc).
In this respect, the RG aims to provide an approximation of the exact quantum theory, and to compare it
with experiments. The case of the field theory that we consider differs from this general picture in its
relations between UV and IR scales. The propagator (12) is exact and defined in the deep IR. From a RG
point of view, the knowledge of this propagator takes into account all the fluctuations at all scales. But, for
finite N, the knowledge of the 2-point functions is not sufficient to reproduce higher correlations functions,
and non-Gaussian interactions are required in the classical action to reproduce experimental correlation
functions. But, due to these interactions, the flow of the different ingredients entering in the definition of the
classical action becomes non-trivial, with the consequence that both Skin and Sint in the UV are unknown.
Thus, in some sense, the situation is the inverse of what we do in ordinary field theory: we have to infer the
form of the UV theory (or more likely a class of UV theory) from the knowledge of only a part of the IR
theory. By construction, such an inference cannot lead to a single solution, but a class of solutions which have
to satisfy the following requirements:

(a) reproduce the exact 2-point functions up to the experimental precision;
(b) reproduce the deviations fromWick’s theorem, due to interactions, and which are less and less perturbat-

ive asN becomes small, once again up to irrelevant corrections with respect to the experimental precision.

Any measurement in physics comes with a finite precision: hence, two effective descriptions are considered to
be equivalent and sufficient to describe something if the predictions agree up to the experiment precision.
The precision is also finite in numerical simulations, and this explains why that we are able to infer only an
equivalent class of models rather than a point in the theory space. In the first section, we showed that the
relative relevance of the interactions is not the same such that irrelevant interactions contribute below the
machine precision threshold, meaning that we have no way to distinguish between several initial conditions
whose trajectories are sufficiently close in the IR (see figure 2). This argument allows working, in a first
approximation, within a finite subspace of the full theory space, focusing on interactions having the largest
canonical dimension.

2.3.2.1. Passive RG
Because of the existence of an intrinsic length scale ξ defined in (25), we can think to partially integrate
microscopic degrees of freedom with respect to this length scale to construct a proper RG flow following
standard field theory. In this picture, what is playing the role of a microscopic scale is the working precision
(see section 2.1.3), which introduces a cut-off in momentum integration Λ = 1/a0. We can then construct a
coarse graining procedure from grid size dilatation (see figure 3).

Note that from such a procedure, one needs to have ξ ≫ a0. Because the maximal value for p is
p∞ = 2π/a0, we can show that it implies p∞ξ ≫ 1, which invalidates the expansion (21). However, it may
happen that such an expansion holds in a sufficiently large domain. A necessary condition is that the
expansion (21) holds for the smallest (nonzero) momentum p0 = 2π/a0N0, implying:
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Figure 2. Behavior of the RG flow with different initial conditions. The red region corresponds to initial conditions for all
microscopic actions whose RG flows are experimentally indistinguishable in the deep IR regime, and corresponds to the same
effective physics described by Γ.

Figure 3. A passive change of the grid scale, provided by a dilatation of working precision from a0 to a ′
0 .

ξ ≪ a0 N0 ≡ L, (58)

which is the condition defining the large volume limit.
A dilatation procedure as described in figure 3 induces a RG by partial integration of momenta into the

windows∼]1/a ′
0,1/a0]. The existence of two complementary limits ξ ≪ L and ξ ≫ a0 is reminiscent of a

crossover scale behavior, between a deep UV limit p∼ 1/a0 and a deep IR limit (p∼ 1/L), which we will
study separately in the next section. Note that such a crossover scale appears generally in situations where
two very different mass scales appear, ensuring decoupling19 of some effects associated to the larger one
when experiments focus on the first one [86]. Here, what plays the role of a large mass is the inverse of the
typical observation scale ξ; in the very large mass limit, p∞ ≪ (ξ)−1, and the IR sector recovers all the
physics. In the opposite limit, p0 ≫ (ξ)−1, everything is UV, and an expansion such that (21) does not hold.
In other words, for p≪ (ξ)−1, one expects that quantum effects are suppressed with powers of (ξ)−1. This
observation can be a source of improvement for approximations used to solve the RG flow equation (61) in
the next section. In particular, we understand that contributions coming from higher couplings will tend to
stay small if they are at the transition scale (ξ)−1. Section 3 is devoted to this RG strategy.

2.3.2.2. Active RG
In the process described above, the observation scale ξ is kept fixed and the working precision is changed.
Conversely, we can keep the data (i.e. the working precision) fixed and change the observation scale. If the
first version is essentially passive with respect to the NNs (i.e. the latter is not changed), this strategy is, in
contrast, active (see figure 4). Indeed, remembering the expression (25), ξ is completely determined in terms
of σW , the standard deviation of the weight distribution. Hence, flowing in the observation scale is
equivalent to changing the weight standard deviation, and thus the NN.

Physically, if we think of a thermodynamic system like a ferromagnet, such a strategy is equivalent to
turning the thermostat’s knob to lower the temperature towards the critical regime. This alternative point of
view is the subject of the section 4.

Remark 1. The active RG is closer to the RG version considered in the [32] than the passive scheme, as the flow
equations derived in section 4 show explicitly. However, despite this formal contact, our approach differs by
its very construction. While, from their point of view, the RG is the mathematical explanation of a principle of

19 Such a decoupling is at the origin of the large mass expansion in field theory.
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Figure 4. An active change of the observation scale from ξ to ξ ′, without dilatation of working precision.

invariance with respect to a certain volume ‘cut-off ’, our RG is the result of a procedure of partial integration
of the degrees of freedom of the field.

Indeed, the RG flow is usually performed with respect to a UV cut-off (spacetime/data-space resolution)
and not an IR cut-off (volume). In [32], the large volume cut-off was introduced because the 2-point func-
tion diverges at large distance (at least, for the ReLU-net), which reminds the short-distance divergence of the
canonical propagator in particle QFT. Moreover, one can ask whether the data-space should be identified with
the position or momentum space in usual spacetime QFT, and in principle this could depend on the problem.
From our arguments in section 2.1.3, it seems more natural to identify the data-space with the position space
(except in the case where the data is already the Fourier transform of a space(time) process). IR divergences
are also present in particle QFT, and they are cured following different methods according to their origin. The
first case are massless particles, for which a refined definition of amplitudes is needed [25, 87]. An IR cut-off
(such as a mass) can be introduced at intermediate stages to regulate the integral, but it is not a renormaliz-
ation parameter. In practice, the divergences of the ReLU-net arise from a similar origin (singularity in the
propagator for large distance/zero-momentum). Second, IR divergences appear for internal on-shell propag-
ators: they translate the fact that quantum effects shift the vacuum and masses of the fields. Resummation of
quantum effects through renormalization leads to finite results [25, 74]. Third, some quantities can diverge
for infinite volume for example when studying phase transition: in that case, the usual method is to study the
theory with different values of a volume cut-off and to extrapolate to infinite volume (thermodynamic limit)
[88]. However, this is not a renormalization flow. For these reasons, we take a more conservative approach and
identify small resolution in data space with the UV limit, and perform the RG flow for the associated cut-off.

It is also noted that in [32, section 4.3] that the Gauss-net does not require renormalization because the
2-point function is exponentially decaying with the distance, such that all integrals are convergent. In fact,
the previous paragraph shows that renormalization is still needed in this case because its role is not only to
handle properly (spurious) UV divergences, but also to take into account quantum effects (some of which
lead to IR divergences). Said another way, renormalization provides a mapping between the bare and physical
parameters (at a given energy scale) there is always a renormalization flow in the space of couplings. Indeed,
the bare parameters describe the properties of the fields without interactions: they are not physical because
fields do not live in isolation and any measurement implies an interaction. A famous example of a perfectly
finite theory but which has an infinite number of finite (such that predictivity is not lost) counter-terms and
non-trivial RG flow (with the so-called stub length) is string field theory [75, 89, 90].

3. Flowing through NN-QFT theory space: the passive RG

In this section, we show how the passive RG within Wetterich formalism allows predicting the behavior of
correlation functions for a fully connected NN with a single hidden layer. We start with a short presentation
of the Wetterich formalism, before turning on to applications. We will consider separately two different
regimes, the deep IR regime k≪ (ξ)−1 where the effective propagator can be suitably approximated with an
ordinary Laplacian∼ (−∆+m2)−1, and the UV regime k∼ (ξ)−1, where the propagator follows the
exponential law∼ e−∆/m2

/m2.

3.1. Wetterich formalism
In section 2.3.1, we provided a formal introduction to Wilson’s ideas for the RG. In this section, we present
another incarnation, the so-called Wetterich formalism [52, 53, 56], which focuses on the effective action for
integrated degrees of freedom rather than on the effective classical action for the remaining degrees of
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freedom, as it is the case in (57). We focus on the passive RG as presented in the section 2.3.2. Let Λ = 1/a0
be some reference working precision and k ∈ [0,Λ]. Assuming that we performed partial integration up to
the scale k, we denote as Γk the effective action for those averaged degrees of freedom. Obviously, it must
satisfy the boundary conditions:

(a) Γk=Λ = S, no fluctuations are integrated out, and the effective action reduces to the classical action.
(b) Γk=0 = Γ, all fluctuations are integrated out and we recover the full effective action Γ defined in (48).

The Wetterich formalism aims to construct a smooth interpolation between these two limits. To this end, it is
convenient to modify the classical action with a scale dependent mass term∆Sk, which reads in momentum
space:

∆Sk =
1

2

ˆ
f(−p)rk(p

2)f(p). (59)

The substitution S→ S+∆Sk defines a k-dependent partition function Zk through the definition (47). The
shape of the scale-dependent mass rk(p2) is designed to freeze low momenta modes p2 < k2, decoupling
them from long distance physics whereas high energy modes p2 > k2 remain essentially unaffected.
Moreover, in order to recover the full classical action Γ for k= 0, rk(p2) has to vanish in that limit. In the
same way, it has to become very large in the opposite limit, for k→ Λ, in order to satisfy the UV boundary
condition Γk→Λ → S (all the fluctuations are frozen). The interpolating functional Γk is defined as:

Γk[Ψ]+ lnZk[ j] =

ˆ
dxj(x)Ψ(x)− 1

2

ˆ
Ψ(−p)rk(p

2)Ψ(p). (60)

As k varies from k to k− δk, effective couplings involved in the effective action change. To obtain the
differential equation governing the behavior of Γk, as k varies, we can differentiate the definition (60) with
respect to k. After a tedious calculation whose details can be found in [56], we get the following functional
equation:

d

dk
Γk =

1

2

ˆ
dp

(2π)din
drk
dk

(p2)(Γ(2)
k + rk)

−1(p,−p), (61)

where Γ(n)
k denotes the nth functional derivative with respect to the classical fieldΨ(x) := δ lnZk/δj(x). This

equation, up to the formal character of its derivation, is as exact as equation (57) is. It defines a trajectory
through a functional space and is as hard to solve as the equation (57). Approximations are required to make
the underlying physics tractable. The standard strategy, called truncation, is to identify a relevant
finite-dimensional subspace of the full theory space, and to project the flow equation (61) onto it. Working
with equation (61) has the great advantage that this projection procedure does not require to assume that
couplings are small, and thus allows investigating approximate but non-perturbative solutions of the RG flow.

3.2. Local potential approximation in the deep IR
The local potential approximation (LPA) is one of the most popular approximation procedures [56] to solve
the exact RG flow equation (61). This approximation focuses on the region of the full theory space spanned
by local interactions in the sense of (29). For the investigations in this section, we assume p2 ≪ 2σ2

W/din,
which is our reference mass scale. This implies:

k≪ ξ−1, (62)

which defines the IR regime (see section 2.3.2). Note that due to the scaling behavior of derivative
contributions, one expects that the validity of this description survives in the weak UV regime:
1/a0 ≫ k≫ (ξ)−1 due to the large river effect which states, that in a suitable vicinity of the Gaussian fixed
point and in the absence of singularities along the flow, the latter projects itself into the subspace spanned by
the most relevant couplings [91].

3.2.1. Symmetric phase
To begin, we focus on the simplest truncation around sixtic interactions, discarding from our analysis
contributions arising from higher couplings. This is equivalent to setting:

Γ
(2n)
k [Ψ = 0] = 0 , forn> 3, (63)
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where to avoid confusion with the example given in section 2.3, we denote asΨ the classical field. Note that
such an expansion aroundΨ= 0 is named symmetric phase expansion, and we call symmetric phase the
domain of the full phase space where it remains valid. It may happen that such an expansion breaks down, in
cases whereΨ= 0 becomes an unstable vacuum. This is the case when phase transitions are encountered. In
this section, we focus on the symmetric phase, and discuss more elaborate formalisms in the next section.
Approximation (63) ensures that we keep effects up to order 1/N2.

To be more concrete, we assume that Γk[Ψ] can be decomposed as a sum of two contributions:

Γk[Ψ] = Γk,kin[Ψ]+Uk[Ψ], (64)

where:

(a) The kinetic contribution Γk,kin[Ψ] keeps all the quadratic terms in Γk[Ψ].
(b) The effective potential Uk[Ψ] gathers the non-Gaussian contributions in the expansion of Γk[Ψ].

Without lost of generality, the kinetic contribution can be written as:

Γk,kin[Ψ] =
1

2

∑
p

Ψ(p)Kk(p
2)Ψ(−p). (65)

The kernel Kk(p2) is a priori difficult to track. Fortunately, because we are aiming to deal with IR effects, the
momentum p is expected to be small, justifying to expand K(p) in power of p2:

Kk(p) =Kk(0)+ p2 K ′
k(0)+O(p4). (66)

The first term of this expansion define the running mass, and we denote it asm2(k). In the same way the
second term of the expansion is called running wave function renormalization, and we denote it as Z(k).
Nerveless, it is easy to check that in the symmetric phase Z(k) does not depend on the running scale k (see
below). Thus we must have Z(k) = Z0 = 1. This scheme defines the derivative expansion [54, 63, 84, 92], and
for this section we focus on the two first terms:

Γk,kin[Ψ] =
1

2

∑
p

Ψ(p)(p2 +m2(k))Ψ(−p). (67)

To keep only effects up to order 1/N2, we consider the following truncation for the effective potential:

Uk[Ψ] =
u4
4!
A4[Ψ]+

u6
6!
A6[Ψ], (68)

where:

An[Ψ] :=
∑
{pi}

δ0,
∑n

i=1 pi

n∏
j=1

Ψ(pj). (69)

This form follows from the expression of a local interaction of order n in position space: the Fourier
transformation to momentum space introduces one momentum pj for each field together with a delta
function for momentum conservation, and a sum (since the pj take discrete values) over each value of the
momentum. The final piece is the regulator rk. From the choice of the kinetic truncation (67), it is suitable to
use the modified version of the standard optimized Litim’s regulator [93]:

rk(p
2) := (k2 − p2)θ(k2 − p2), (70)

for which analytic computations are possible. In this equation, θ is the step function such that θ(x> 0) = 1
and θ(x< 0) = 0. The flow equations can be deduced from the exact RG equation (61) by taking successive
derivatives with respect to the classical fieldΨ. Taking the second derivative gives the flow equation for

Γ
(2)
k (⃗p1, p⃗2).

k
d

dk
Γ
(2)
k (p1,p2) =−1

2

∑
{pα},α=0,3,4

(
k
d

dk
rk(p

2
0)

)
Gk(p0,p3)Γ

(4)
k (p1,p2,p3,p4)Gk(p4,p0), (71)

where, on the RHS, functions are computed forΨ= 0. From the truncation (67), we must have:

Gk(p,p
′) :=

δp,−p ′

p2 +m2(k)+ rk(p2)
. (72)
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The fourth derivative Γ(4)
k (p1,p2,p3,p4) can be easily computed from the truncation (68), leading to:

Γ
(4)
k (p1,p2,p3,p4) = u4 δ0,p1+p2+p3+p4 , (73)

replacingΨ= 0 at the end of the computation. Thus, setting p1 = 0 on both sides of equation (71), we get
after some calculations20:

k
d

dk
m2

k =− u4
(k2 +m2(k))2

Vol(k), (74)

where

Vol(k) :=

k2
∑
p

θ(k2 − p2)

 . (75)

Remark 2. In equation (71), the only dependence on the external momenta p1 and p2 on left-hand side is

through the conservation delta δp1,−p2 arising from the structure of the four-point function vertex Γ(4)
k . Thus,

the field strength Z(k), whose flow equation could be deduced by taking derivatives on both sides of equation
(71) with respect to p21, vanish identically.

In the same way, taking the fourth and sixth derivatives with respect toM of the flow equation (61), and
from the condition (73), we get schematically:

k
d

dk
Γ
(4)
k =−1

2
G̃kΓ

(6)
k Gk + 3G̃kΓ

(4)
k GkΓ

(4)
k Gk, (76)

and:

k
d

dk
Γ
(6)
k =−1

2
G̃kΓ

(8)
k Gk + 15G̃kΓ

(6)
k GkΓ

(4)
k Gk − 45G̃kΓ

(4)
k GkΓ

(4)
k GkΓ

(4)
k Gk. (77)

A tedious calculation leads to:

k
du4
dk

=− u6
(k2 +m2(k))2

Vol(k)+
6u24

(k2 +m2(k))3
Vol(k), (78)

and

k
du6
dk

=
30 u4u6

(k2 +m2(k))2
Vol(k)− 90 u34

(k2 +m2(k))3
Vol(k). (79)

These equations illustrate how the scaling can be fixed without assuming any background dimension, as
discussed in section 2.2.2. Indeed, a moment of reflection shows that the argument below equation (42)
about the existence of a non-trivial expansion is equivalent to the statement that a global rescaling of all
couplings must exist such that the flow equations become an autonomous system. For k large enough, the
sum in Vol(k) can be well approximated by an integral, and21:

Vol(k) ∼
k≫1

1

(2π)din
πdin/2kdin+2

Γ(din/2+ 1)
=: Kdink

din+2. (80)

One expects that such an approximation remains valid for k2 ≫ 4π2/L2, with L being large (see figure 5).
Thus, defining,

ū2(k) = k−2m2(k) , ū2n = k−2n+(n−1)dinu2n, (81)

we get the autonomous system (β2n := kdū2n/dk):

β2 =−2ū2 −
Kdin ū4

(1+ ū2)2
, (82)

20 Details are given on appendix B.
21 ∑

p →
1

(2π)din

´
dp.
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Figure 5. The discrete volume in two dimension (blue curve) versus the continuous version given by π(R+ 1)2 (brown curve).

β4 =−(4− din)ū4 −
Kdin ū6

(1+ ū2)2
+

6 Kdin ū
2
4

(1+ ū2)3
, (83)

β6 =−(6− 2din)ū6 +
30 Kdin ū4ū6
(1+ ū2)3

− 90 Kdin ū
3
4

(1+ ū2)4
. (84)

From these equations, it is obvious that the behavior of the flow depends on the dimension din. For
instance, for din > 4, all the couplings are irrelevant and trajectories return toward the Gaussian region, the
ū2 axis being the only direction of instability. In contrast, for din < 4, some couplings become relevant, and
trajectories are repelled from the Gaussian region. u4 is the first one to become relevant, for din > 3; for
din < 3, u6 becomes relevant as well. Figure 6 illustrates the behavior of the RG flow for several dimensions.
We have integrated numerically the flow equations for u2 = 1, u4 =−0.5, u6 = 0.01 in figure 7.

3.2.2. Beyond the symmetric phase
In this section, we consider another approximation scheme for the effective potential Uk. Focusing on the IR
regime, we assume thatΨ(p) essentially reduces to its zero component (the macroscopic field):

Ψ(p)∼Ψ0 δ0p, (85)

and, defining χ := Ψ2
0/2, we expand the effective potential per unit volume in power series around χ= κ(k):

Uk[Ψ0] =
1

2!
u4(k)

(
χ−κ(k)

)2

+
1

3!
u6(k)

(
χ−κ(k)

)3

+ · · · , (86)

within this parametrization, we identify directly κ with the (non-zero) vacuum, which runs with the scale k.

The two-point function Γ
(2)
k is moreover defined as:

Γ
(2)
k (p,p ′) =

(
Z(k)p2 +

∂2 Uk

∂Ψ2
0

)
δ(p+ p ′). (87)

Note that we introduced the field strength renormalization Z(k) because its own flow is nonzero as soon as
κ ̸= 0, i.e. broken phase effect introduces an anomalous dimension. As a technical device, we move the mass
contribution in the effective potential. For a uniform field configuration, we must have:

Γk[Ψuniform] = VUk[Ψuniform]. (88)

Therefore, taking the derivative with respect to t := ln(k/Λ) (Ẋ := kdX/dk) and writing U ′
k (χ) = ∂Uk/∂Ψ0,

we get from (61):

U̇k[Ψ0] =
1

2

ˆ
dp

(2π)din
ṙk(p

2)

(
1

Γ
(2)
k + rk

)
(p,−p), (89)
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Figure 6. Typical behavior of the RG flow for d< 4 (on left) and d> 4 (on right). In the first case, the flow is repelled from the
Gaussian fixed point GFP) and there exists an IR fixed point; with one attractive and one repulsive direction. The integral curve of
the attractive direction connects it with the Gaussian fixed point, and defines the critical line, splitting the RG trajectories in two
families, going toward positive and negative mass respectively. For the second case, there are no fixed points, and the transition
line between symmetric and broken phase is controlled by the Gaussian fixed point itself.

or, using the definition (87):

U̇k[χ] =
1

2

ˆ
dp

(2π)din
ṙk(p

2)

(
1

Z(k)p2 + rk(p2)+U ′
k (χ)+ 2χU ′ ′

k (χ)

)
. (90)

As in the previous section, we use the Litim regulator22, but modify it to deal with the running field strength
Z(k):

rk(p
2) = Z(k)(k2 − p2)θ(k2 − p2), (91)

leading straightforwardly to:

U̇k[χ] =
Vol(k)

Z(k)k2 +U ′
k (χ)+ 2χU ′ ′

k (χ)
. (92)

For k large enough, we may use the same integral approximation as for (80), but taking into account that Kdin

must now depend on the anomalous dimension ηk because of the factor Z(k) in (91):

ηk := k
d

dk
ln(Z(k)), (93)

22 Which is optimal in the following sense: the functional RG equations are defined only if the effective propagator G is well-defined; that
is, ifG−1 has no zeromodes (and therefore do not develop IR divergences). This can be achieved by demanding thatG−1 has a sufficiently
large gap, i.e. a sufficiently large minimum. See [93] for more details.
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Figure 7. Solution to the passive flow equations for u2 = 1, u4 =−0.5, u6 = 0.01.

such that:

U̇k[χ] = Kdin(ηk)k
din+2 1

Z(k)k2 +U ′
k (χ)+ 2χU ′ ′

k (χ)
. (94)

As in the previous section, we introduce dimensionless quantities (labeled with overlines) as:

Ūk = (k2)−din/2Uk , χ̄= Z(k)(k2)1−din/2χ. (95)

Note that all these changes of variable make sense from the requirement that all the terms in the potential
must have the same dimension (the dimensions of g and h have been fixed). The derivative on the RHS in
equation (94) is taken at χ fixed. Therefore, we have:

U̇k[χ] = (k2)din/2
[
˙̄Uk[χ̄] + (din + ηk)Ūk[χ̄]− (din − 2)χ̄

∂

∂χ̄
Ūk[χ̄]

]
, (96)

where in the RHS the derivative is taken with χ̄ fixed. We obtain:

˙̄Uk[χ̄] =−(din + ηk)Ūk[χ̄] + (din − 2)χ̄
∂

∂χ̄
Ūk[χ̄] +

Kdin(ηk)

1+ Ū ′
k (χ̄)+ 2χ̄Ū ′ ′

k (χ̄)
. (97)
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The flow equations can be deduced from the normalization conditions at scale k:

∂Uk

∂χ

∣∣∣∣
χ=κ

= 0 ,
∂nUk

∂χn

∣∣∣∣
χ=κ

= u2n. (98)

Hence, because ˙̄Uk[χ̄= κ̄] =−ḡ ˙̄κ, we obtain for κ̄,

βκ =−(din − 2− ηk)κ̄+Kdin

3+ 2κ̄ ū6
ū4

(1+ 2κ̄ū4)2
, (99)

and after a tedious calculation, we obtain for u4 and u6:

β4 =−(4− din + 2ηk)ū4 +(din − 2)κ̄ū6 −
5Kdin ū6

(1+ 2κ̄ū4)2
+ 2Kdin

(3ū4 + 2κ̄ū6)2

(1+ 2κ̄ū4)3
, (100)

β6 =−(6− 2din + 3ηk)ū6 − 6Kdin
(3ū4 + 2κ̄ū6)3

(1+ 2κ̄ū4)4
+ 20 Kdin ū6

3ū4 + 2κ̄ū6
(1+ 2κ̄ū4)3

. (101)

The computation of the anomalous dimension is long and provided in appendix B. The result is:

Proposition 1. For the Litim’s regulator (91), the anomalous dimension ηk in the LPA with kinetic truncation up
to order p2 is given by:

ηk =−H(din)
(3 ū4

√
2κ̄+ ū6(2κ̄)3/2)2

(1+ 2κ̄ū4)4
, (102)

where:

H(din) :=
π

din+1
2

din + 1

Γ
(
din
2

)
Γ
(
din+1
2

)
Γ
(
din−1
2

) . (103)

3.3. 1/a0 > k≳ ξ−1: deep UV regime
In this section, we are aiming to discuss the deep UV regime 1/a0 > k≳ (ξ)−1, where the expansion (21) is
not valid. For this regime, the derivative expansion breaks down as well, and a local approximation for
interactions is no longer justified. We present a method, inspired from the BMW formalism [57–60], which
considerably improves the accuracy of truncations in regimes where the momentum-dependence of vertex
functions is as relevant as the purely local ones, i.e. relevant enough to invalidate the derivative expansion. In
this section, we summarize the essential results through three compact statements, in order to focus on the
results, and leave the technical details in appendix B.

The procedure that we propose is based on the following three approximations (see also [57, 58]):

(a) We parametrize the 2-point function Γ
(2)
k (p,p ′) with a single parameter, the running mass m2(k), such

that:

Γ
(2)
k (p,p ′) := δ(p+ p ′)m2(k)exp

p2

m2
, (104)

such that Γ(2)
k (p,p ′) reduces to the exact 2-point function in the deep IR form2(k= 0) = σ2

W/2din.
(b) We assume that vertices are slowly varying with respect to the momenta q running through the effective

loops in the flow equation. The allowed windows of momenta being such that q2 ≲ k2, for k small enough
with respect to other momenta, we require:

Γ(n)(p1,p2, ...,pn−1 + q,pn − q,Ψ0)≈ Γ(n)(p1,p2, ...,pn−1,pn,Ψ0), (105)

for some vacuumΨ0.
(c) The third approximation is about the propagator entering in the flow equation. For q in the windows of

momenta allowed by ∂krk(q2), we must have:

Gk((p+ q)2)≈ Gk(q
2)θ

(
1−α

p2

k2

)
, (106)

where θ is the Heaviside step function and α a positive number, expected to be of order 1.
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To complete these approximations we need to choose a suitable regulator. In principle, we could always
use the Litim regulator (or any other regulator used in the literature). However, due to the parameterization
of the phase space that we have chosen, and in particular the expression of the 2-point function, this
regulator loses its crucial advantage which consists in freezing all the fluctuations below the scale k. The Litim
optimal condition is moreover expected to be a relevant constraint to define a regulator, especially in the
symmetric phase, and we have the following statement:

Claim 1. The scale dependent mass:

rk(p
2) =m2(k)

(
exp

k2

m2(k)
− exp

p2

m2(k)

)
θ(k2 − p2), (107)

satisfies all the requirements for a regulator as soon as m2(k)> 0, freezes out all fluctuations with momentum
q2 < k2, and is optimal in Litim’s sense.

The physical discussion motivating this choice being a little technical, we provide it in appendix B. Note
that Litim’s condition, which relies on the existence of an optimized gap for the inverse 2-point function

Γ
(2)
k + rk(p2), is not an absolute criterion in regard to the reliability of the results. Indeed, some choices are

expected to provide an optimal bound for the gap, which may have an influence on the computation of
physical quantities like critical exponents [94–96]. Working within the set of ‘optimized regulators’ in Litim’s
sense, we may complete the optimization argument with a principle of minimal sensitivity [94, 97, 98],
requiring that physical quantity has to be stationary with respect to some parameters spanning a family of
regulators. This can be done for instance by replacing rk → βrk, and to vary the physical quantities with
respect to β. This will be the only optimization scheme that we will discuss in this paper.

Within these approximations, the equation for the 2-point function reads:

Γ̇
(2)
k (p,−p) =

ˆ
dq

(2π)din
ṙk(q)

[
G(q2)Γ(3)

k (p,0,−p)G((q+ p)2)Γ(3)
k (−p,p,0)G(q2)

− 1

2
G(q2)Γ(4)

k (p,−p,0,0)G(q2)

]
,

which, from the observation that Γ(n+1)
k (p1, · · · ,pn,0)≡ ∂Γ

(n)
k (p1, · · · ,pn)/∂Ψ0, leads to a closed equation

for Γ(2)
k :

Γ̇
(2)
k (p,−p) =

ˆ
dq

(2π)din
ṙk(q)G

2(q2)

[(
∂Γ

(2)
k (p,−p)

∂Ψ0

)2

G((p+ q)2)− 1

2

∂2Γ
(2)
k

∂Ψ2
0

]
. (108)

This is the standard BMW strategy. Our approach will however be a little different. First, we work in the
symmetric phaseΨ0 = 0. Second, we exploit the fact that the 2-point function in our parametrization
depends only on a single parameter (the mass) to close the hierarchy around the 6-point function, thus
removing the need for the usual assumption of a proportionality relation between the 6 and 4 points
contributions in the flow equation of Γk(4) (see [57]). On the contrary, we will be able to deduce an
expression for the 6-point function from the knowledge of the 4-point function, itself deduced from the flow
equation of the 2-point function. The only relevant parameters at sufficiently large times being the local
parameters, u2n, whose flow equations are deduced from the derivative expansion. The derivation of these
equations being technical, we provide it in appendix B, summarizing them in the following statement:

Proposition 2. Truncating around sixtic interactions (i.e. up to O(1/N2) effects) in the deep UV, neglecting the
momentum dependence of effective vertices in the computation of effective loops and for external momenta large
enough, the flow equations for the local couplings ū2, ū4 and ū6 are:

β2 =−2ū2 + 2Kdin ū4
(1− ū2)2 + ū2(ū2F0 − F1)

2ū32e
1/ū2 −Kdin ū4 ((1− ū2)+ (ū2F0 − F1))

(109)

β4 =−(4− din)ū4 − Lk(ū2)

(
ū6e−2/ū2

ū22
− 6ū24e

−3/ū2

ū32

)
, (110)

β6 =−(6− 2din)ū6 − Lk(ū2)

(
90 ū34e

−4/ū2

ū42
− 30 ū6ū4e−3/ū2

ū32

)
, (111)
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where:

Lk(ū2) := e1/ū2Kdin

[
β2 + 2ū2

2

(
F0 −

F1
ū2

)
−
(
1+

β2 + 2ū2
2

)(
1− 1

ū2

)]
, (112)

and Fn(ū2) := din
´ 1
0 r

din+2n−1e
r2−1
ū2 dr. Furthermore, defining the minimal dimensionless vertex functions as

(x := p/k):

Γ
(4)
k (p,−p,0,0) =: k4−din̄fk(x,0) , Γ

(6)
k (p,−p,0,0,0,0) =: k6−2din h̄k(x), (113)

we have, for p large enough:

f̄k(x,0) =
ū2(ū2 − x2)(2ū2 +β2)e(1+x 2)/ū2

Kdin

[
β2+2ū2

2

(
F0 − F1

ū2

)
−
(
1+ β2+2ū2

2

)(
1− 1

ū2

)] , (114)

and:

h̄k(x)≈
(
6(ū4)e−1/ū2

ū2
− ū22(4− din)

Lk(ū2)
e2/ū2

)
f̄k(x,0)+ e2/ū2 ū22

2x2 f̄
′
k(x,0)−

˙̄fk(x,0)

Lk(ū2)
. (115)

It is moreover interesting to note that for external momenta large enough, the knowledge of f̄k(x,0) allows
reconstructing the 4-point function. Once again, we put the proof in appendix B, and summarize the result
in a compact statement:

Claim 2. For momenta large enough (p2i ∼ (ξ)−2(k)), the 4-point vertex Γ
(4)
k (p1,p2,p3,p4) can be suitably

approximated as:

Γ
(4)
k (p1,p2,p3,p4)≈ δ

(
4∑

i=1

pi

)
4∑

j=2

γk(p1 + pj), (116)

with

γk(p) :=
1

2
k4−din̄fk

(p
k
,0
)
− 1

6
u4. (117)

4. Flowing though the neural network space: the active RG

In this section, following the discussion of section 2.3.2, we consider the active RG, viewing the networks
parameters 2 σ2

W/din as an UV cut-off rather than a running mass. First, we derive the corresponding flow
equation. We show that n-point functions exhibit a purely scaling behavior, and that the corresponding
β-functions reduce to the linear dimensional contributions. As discussed in section 2.3.2, this RG is formally
the same as the one used in [32], up to the lack of explicit scaling for mass, explaining why our scaling
dimensions are different. Second, we investigate the content of the flow equations that we obtained. As
pointed out in the section 2.3.2, the major advantage of this approach is to avoid introducing a working
precision, or any special structure regarding the nature of the data.

Let us consider a network (σW,σb), and define Λ2 := 2 σ2
W/din. Within this suggestive notation, the exact

propagator looks like a UV regularized free propagator:

KΛ(p
2) :=

e−p2/Λ2

Λ2
, (118)

Λ playing the role of a UV cut-off, which suppresses large momenta. The question is therefore: what happen
if we smoothly change the parameter σW ?23 Formally, this is equivalent to moving the UV cut-off, which can
be translated as a chain of equivalence relations between classical actions through the differential equation
(57), all of them having the same long distance physics. One can think for the evolution equation of the
classical action to something like equation (57), i.e.

Λ
dṼΛ

dΛ
=−1

2

ˆ
dp

(2π)din
Λ
dKΛ

dΛ
(p2)

( δ2 ṼΛ

δϕ(p)δϕ(−p)
−

δṼΛ(s)

δϕ(p)

δṼΛ(s)

δϕ(−p)

)
. (119)

23 In fact, this situation is familiar in string field theory, where Λ is called the stub parameter [90, 99–101].
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Such an equation however assumes that KΛ is the free propagator. Rather, in our construction, it has to be
understood as the effective propagator, taking into account fluctuations. Therefore, we have to construct a
coarse graining with a fixed shape of the effective propagator, the corresponding free propagator remaining
unknown. There is a pragmatic way to do this. We formally introduce a regulator∆Sk in the classical action.
This leads to the Wetterich equation (61), but with the additional constraint that:

Γ
(2)
k (p1,p2)+ rk(p

2)δ(p1 + p2)≡ k2 exp
( p21
k2

)
δ(p1 + p2). (120)

This equation simply means that we relate the running scale k to the standard deviation of the NN weights as:

k2 =
2 σ2

W

din
, (121)

and that we keep the shape of the 2-point function fixed along the RG trajectory (if it exists), fixing

Γ
(2)
k (p,−p) as soon as rk(p2) is given. Let us show how this condition allows closing the hierarchical flow

equations. Let us consider the flow equation (122) for Γ(2)
k (p1,p2). Neglecting the momentum dependence of

the effective vertex Γ(4)
k (p1,p2,q,−q) with respect to the momenta ‘q’ running through the effective loop

following the discussion of section 3.3, we get:

Γ̇
(2)
k (p,−p)≈−1

2
Γ
(4)
k (p,−p,0,0)

ˆ
dq

(2π)din
ṙk(q

2)G2
k (q

2). (122)

Remark 3. Note that this approach implicitly assumes k is small enough to justify the replacement:

Γ
(4)
k (p,−p,q,−q)→ Γ

(4)
k (p,−p,0,0) in (122). Hence, the resulting flow equations are expected to be exact

for reference scales in the IR.

Because the LHS can be explicitly computed from (120), we therefore obtain:

Γ
(4)
k (p,−p,0,0)≈−2k4

2(k2 − p2)exp
(

p2

k 2

)
− ṙk(p2)

´ dq
(2π)din

ṙk(q2)exp
(

−2q2

k 2

) δ(0). (123)

In the same way, the flow equation for Γ(4)
k (p,−p,0,0) allows in principle to compute Γ(6)

k (p,−p,0,0,0,0)
within the same approximation. Let us illustrate how this works. Let us consider a given network
defining the ‘fundamental scale’ k≡ Λ0. We can measure the 4-point function at zero momentum

Γ
(4)
k=Λ0

(0,0,0,0)≡ u4(Λ0)δ(0). This condition in turn fixes the value of ṙk(0). For instance, let us consider
the following explicit example, working with the slightly modified Litim’s regulator:

rk(p
2) = α(k2 − p2)θ(k2 − p2). (124)

Straightforwardly, we have rk(0) = αk2 and ṙk(0) = 2αk2, and the previous equality reads as:

u4(Λ0) = Λ4−din
0

(
−2

1−α

α

1

I2

)
, (125)

where we introduced the dimensionless variable x := q/k, and:

I2 :=

ˆ
dx

(2π)din
θ(1− x2)e−2x 2 . (126)

Introducing the dimensionless coupling ū4 := Λdin−4
0 u4, and solving on α, we thus obtain:

α=
1

1− ū4I2
2

. (127)

Because u4 =O(1/N), and I2 is a pure number, α is close to 1 for large N. However, α increases as N
decreases, and for ū4 ∼ 2/I2 the approximation breaks down. Note that we could expect this not to be a
limitation of the approach in itself, but a limitation of the Litim regulator, however, a moment of reflection
shows that such a singular behavior is in fact very general, and independent on the choice of the regulator.
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Figure 8. Values of the averaged coupling constant ⟨|u4|⟩ for N= 2,3,4,5,10,20.

Under the condition (127), the problem (123) is well posed but trivial: it reduces to a pure scaling behavior.
Indeed, given (123), we have:

u4(k) = k4−din

(
−2

1−α

α

1

I2

)
=
( k

Λ0

)4−din
u4(Λ0). (128)

The flow is entirely fixed by dimensional analysis, and the flow equation for u4 reduces to its linear
contribution:

k
du4
dk

= (4− din)u4. (129)

In turn, this equation determines Γ(6)
k ∼ (Γ

(4)
k )2 ∼O(1/N2). The effective loop behaves like k6−2din , times a

factor which is k independent. Hence, we deduce:

k
du6
dk

= (6− 2din)u6, (130)
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Figure 9. Values of the averaged coupling constant ⟨|u4|⟩ for N= 50,100,500,1000.

meaning that u6 follows a purely scaling behavior as well.
We can use (121) to write the flow equations in terms of the standard deviation σW :

σW
du4
dσW

= (4− din)u4 , σW
du6
dσW

= (6− 2din)u6, (131)

where now u4 and u6 are seen as functions of σW . As displayed in figures 8 and 9, the numerical simulations
match to a good precision with the solution to this equation (see appendix A for the computations of u4).

Remark 4. Finally, let us make a remark in regard to the results obtained in the [32]. Indeed, the authors
arrived to the equations (131) with σW replaced by an IR cut-off from perturbation theory, whose validity
assumesN to be large enough. What is puzzling with this calculation is that the RG predictions work even for
small N, where we expect that perturbation theory breaks down. Our derivation solves this paradox: using a
non-perturbative framework, we are able to show that coupling constants follow scaling laws (128), without
assumption on the sizes of the coupling constants (however, note that both derivations have been performed
with different activation functions, such that it would be interesting to check how general (131) is).

5. Conclusion and outlooks

In this paper, we have pushed further the use of the RG for the NN-QFT correspondence [32, 33], which
states that a NN can be represented by a QFT. In the infinite limit of the hidden layer width N, the NN is
described by a GP and mapped to a free field theory, and interactions translate finite-N corrections. The
main difference with usual QFTs used in physics stems from the choice of the kernel (or propagator), itself
inherited from the choice of activation function in the NN. Since it encodes important properties on the
theory (IR and UV divergences, scaling, etc), it is important to ask how the data-space of the NN inputs
differ from usual spacetime. As a consequence, the usual assumptions on interaction locality may not be
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appropriate. In the first part of this paper, we have discussed several of these aspects, providing an
interpretation slightly different from the one in [32]24.

We have then described how to build a non-perturbative RG flow following Wetterich-Morris formalism.
We introduce two different points of view: in the passive case, the UV cut-off is related to the data resolution,
while in the active case, it is given in terms of the standard deviation of the NN weights. The main difference
with [32] is that they postulate a global scale invariance with respect to a large volume cut-off (IR, in the
language of our paper) on the data-space. Intriguingly, their results agree strongly with numerical
simulations, for the small widths, whereas perturbation theory is expected to fail, and even if a scale
invariance with respect to the volume is not expected. In this paper, we solve this paradox by developing a RG
based on an explicit coarse-graining, and derive flow equations from a process of partial integration of the
field degrees of freedom. We find that the active point of view is formally identified with the flow in [32],
thus justifying, in an explicitly non-perturbative framework, the agreement between theory and experience
found in the paper. A natural extension of this work is to include non-local interactions using tensor models.
Another possible direction is to generalize the derivation to other networks such as ReLU-net [32].

On the numerical side, the main result of our paper is the flow equation (131) which shows that the
weight standard deviation σW can be interpreted as a running cut-off in terms of which the couplings of the
NN-QFT change. This means that given the couplings for a specific value of σW , it is possible to compute
analytically the couplings for any other value of σW without doing any numerical simulation. We have
verified this statement using numerical simulations (figures 8 and 9). In this paper, we have focused the
analysis on the analytical computations in the QFT side: we plan to analyze the equations numerically in
future works.

From a function-space perspective, it is natural to understand the learning process as a RG flow induced
in a suitable theory space. It would very interesting to investigate how the notions presented in this paper
could generalize to describe this process and how the couplings change under learning.
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Appendix A. Numerical simulations

In this appendix, we explain how to compute numerically correlation functions for neural networks defined
in section 2.1.1 and how to extract relevant information. In particular, we reproduce the numerical results
from [32] and provide additional details. The code is written in Python and is available at https://github.
com/melsophos/nnqft. Throughout this appendix, we take:

din = 1, N ∈ {2,3,4,5,10,20,50,100,500,1000}. (A.1)

In order to evaluate correlation functions, we consider nnets neural networks f α. For each of them, the
weights and biases are drawn independently from the distributionsN (0,σ2

W/N) andN (0,σb), where N is
the width of the hidden layer. We will take [32]:

σb = 1. (A.2)

24 However, let us stress that this divergence in interpretation does not change in any way the computations and numerical results in both
sides.
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Then, the experimental n-point correlation functions are computed as (3):

G(n)
exp(x1, . . . ,xn) :=

1

nnets

nnets∑
α=1

fα(x1) · · · fα(xn). (A.3)

We define the difference with the large N Green functions G(n)
0 as (see section 2.1.4):

∆G(n)
exp(x1, . . . ,xn) := G(n)

exp(x1, . . . ,xn)−G(n)
0 (x1, . . . ,xn), (A.4)

and the normalized n-point functions as:

mn(x1, . . . ,xn) :=
∆G(n)

exp(x1, . . . ,xn)

G(n)
0 (x1, . . . ,xn)

. (A.5)

Note that no absolute value has been taken until now, and the result can be positive or negative. The large N
Green functions are computed with Wick theorem from the Gauss-net kernel (11). For example, the 4-point
function is given by:

G(4)
0 (x1,x2,x3,x4) = K(x1,x2)K(x3,x4)+K(x1,x3)K(x2,x4)+K(x1,x4)K(x2,x3). (A.6)

In order to reduce variance of the results, we will compute the Green functions by averaging over nbags,
each made of nnets networks:

G(n)
exp(x1, . . . ,xn)→

1

nbags

nbags∑
A=1

G(n)
exp(x1, . . . ,xn)|A, (A.7)

where G(n)
exp(x1, . . . ,xn)|A means that the correlation functions is computed with the bag A. This also allows

extracting standard deviations if needed.
We will compute the correlation functions for the following points [32]:

(x(1), . . . ,x(6)) = (−0.01,−0.006,−0.002,+0.002,+0.006,+0.01). (A.8)

Given a n-point correlation function, we compute it for all the possible combinations of n points x(i) with
i= 1, . . . ,6, including identical entries. Since the experimental Green functions are symmetric by
construction (as are the QFT Green functions), we consider only combinations which are inequivalent up to
permutations. For example, we will compute the following 2-point functions:

G(2)
exp(x

(1),x(1)), G(2)
exp(x

(1),x(2)), . . . ,G(2)
exp(x

(1),x(6)), G(2)
exp(x

(2),x(2)),

G(2)
exp(x

(2),x(3)), . . . , G(2)
exp(x

(6),x(6)).
(A.9)

For n= 2,4,6, there are respectively ncomb = 21,126,462 inequivalent combinations. We denote by ⟨·⟩ the
average of a quantity over all possible combinations of points, and by ⟨| · |⟩ the average of the absolute value25.

The numerical Green functions are exact Green functions because they contain already all quantum
corrections from loop diagrams. Hence, it is more natural to write a 1PI effective field theory and determine
the coefficients by matching the Green functions computed from 1PI Feynman diagrams. Moreover, the
Wetterich formalism from sections 3 and 4 gives relations for the 1PI couplings. We consider the following
1PI interactions to describe the neural network:

Γ = Skin +Γint, Γint =
u4
4!

ˆ
dxϕ(x)4 +

u6
6!

ˆ
dxϕ(x)6, (A.10)

where Skin is the large N free action (13). We consider a local Lagrangian because it turns out that it
reproduces well the experimental Green functions for the points considered previously [32]. In the notations
of [32], we have u4 = 4!λ and u6 = 6!κ. However, the interpretation is slightly different compared to [32]
which writes a microscopic action. The interactions are associated with the part of the kinetic operator ΞW

corresponding to the weight only, since the bias part is always Gaussian and independent of N [32]. Hence,

25 We use the same notation as the average over the networks. However, there is no ambiguity since the latter is used in this section only
to compute Green functions and never appears after.
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Figure A1.Histograms of the normalized deviationsmn for n= 2,4,6 for all combinations of points (A.8).

propagators attached to vertices are KW instead of K: the latter appear only in the disconnected 2-point
propagators.

We now turn our attention to the computation of the experimental Green functions. We take:

σW = 1, nbags = 20, nnets = 30000. (A.11)

Since we know the exact 2-point function G2 = K, we must have:

G(2)
exp(x,y)≈ K(x,y) =⇒ m2(x,y)≈ 0, ∀N. (A.12)

Similarly, we know from (27) that higher-order Green functions must decrease as N increases:

m4 =O(1/N), m6 =O(1/N). (A.13)

We check that it is indeed the case by plotting the values ofm2,m4 andm6 for the different combinations of
points (A.8). The figures A1 (not present in [32]) show that these values go toward 0 as N increases for
n= 4,6. On the other hand, the values for n= 2 do not have any specific pattern, which is expected, since

G(2)
exp should be independent of N.
We can simplify further this information and extract a single number. To do this, we take the absolute

value of the normalized deviations (A.5) and average over the different combinations of points (A.8) to get
⟨|mn|⟩. Moreover, to get an idea of how small are the normalized deviations, we define a background as
follows: we compute the standard deviation ofmn over all bags of neural networks for all combinations of
points (A.8), and then average over the latter. The idea is to compare the normalized error encoded bymn

with its numerical fluctuations over different bags, represented by the standard variation. On the figure A2,
we reproduce the results from [32]: ⟨|mn|⟩ for n= 4,6 is below the background only for small N and for
N = 1000, and it is always below the background for n= 2. In principle, ⟨|mn|⟩ should always be below the
background for higher N (which was not studied in the original paper [32] and which we could not reach for
computational reasons) so the current test is not very sharp; figure A1 give a cleaner assessment.
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Figure A2. Values of the averaged normalized deviations ⟨|mn|⟩ for n= 2,4,6.

Next, we can compute u4(x1,x2,x3,x4). Using Feynman rules, it can be obtained by subtracting the

disconnected contributions (equal to G(4)
0 and built from the 1PI 2-point function) from the full 4-point

function to extract the contact interaction

and truncating the external legs:

u4(x1,x2,x3,x4) =−
∆G(4)

exp(x1,x2,x3,x4)

NK(x1,x2,x3,x4)
,

NK(x1,x2,x3,x4) :=

ˆ
dxKW(x,x1)KW(x,x2)KW(x,x3)KW(x,x4), (A.15)

where KW was defined in (11) (see [32] for more details). Importantly, this equation is really an equality and
not an approximation as in [32]: since we are working with 1PI diagrams, there are no quantum corrections
and any n-point Green function is built from vertices of order n ′ ≤ n. Higher-order verticesm> n appear
only in loop diagrams, which are not present. Hence, this allows determining all 1PI couplings exactly in a
recursive way. Our results agree quantitatively for u4 with those of [32] because the loop corrections are
subleading in the large N expansion. However, this may give different results for u6 since the latter receive
loop corrections from the microscopic quartic vertex.
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Figure A3. Values of the averaged coupling constant.

Figure A4. Values of the averaged coupling constant ⟨|u4|⟩ as a function of σW and N. One standard deviation is displayed above
the curve.

We take:

σW = 1, nbags = 30, nnets = 30000. (A.16)

We find that u4 is constant to a very good precision when evaluated over all combinations of points (A.8). In
figure A3, we display the values of u4 averaged over all combinations and the corresponding standard
deviation and find that its absolute value decreases as N increases, reproducing the results [32]. Importantly,
we find that u4 is negative, which was not indicated in [32] (their figure 4 has an implicit absolute value
needed to use the log-scale). As a consequence, the effective action (A.10) must include a sixtic contribution,
however small, for the path integral to be stable: truncating to quartic interactions as in [32] leads to an
exponential growth of the weight. A preliminary analysis of the passive flow equations (section 3) indicate
that they can be integrated over a large range of k only if the initial conditions satisfy u4 < 0 and u6 > 0,
otherwise the flow diverges.

The final numerical test we perform in this paper is to compute u4 as a function of N and σW (figures 8, 9
and A4). We consider the following values of σW :

σW ∈ {1.0,1.5,2.0, . . . ,9.5,10,20}. (A.17)

We see that u4 decreases as σW and N increase and that the values are well predicted by the active RG flow
equations (131). As such, knowing u4 for a single σW at fixed N allows computing it for any other σW .
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Appendix B. Proofs and technical discussions

B.1. Proof of proposition 1
The term involving the field strength Z in the truncation takes the form:∑

p

1

2
M(−p)(Z[M]p2)M(p), (B.1)

where Z is assumed to depend onM. Because we furthermore assume it to be independent of p2, we can
define Z operationally as:

Z[M= κ]≡ d

dp2
Γ
(2)
k (p,−p)

∣∣∣∣
M=

√
2κ

, (B.2)

and therefore:

ηk :=
1

Z
k
dZ

dk
=

1

Z

d

dp2
Γ̇
(2)
k (p,−p). (B.3)

The flow equation for Γ(2)
k can be deduced from the Wetterich equation,

Γ̇
(2)
k (p,−p) =

∑
q

ṙk(q
2)

[
G2(q2)Γ(3)

k (p,0,−p)G((q+ p)2)Γ(3)
k (−p,p,0)

− 1

2
G(q2)Γ(4)

k (p,−p,0,0)G(q2)

]
.

In the local potential approximation (LPA), the vertices are momentum-independent. Therefore, the

contribution involving Γ(4)
k can be discarded, leading to:

Ż := (Γ
(3)
k (0,0,0))2

∣∣∣∣
M=

√
2κ

d

dp2

∑
q

ṙk(q
2)

[
G2(q2)G((q+ p)2)

]
M=

√
2κ,p=0

, (B.4)

where, according to LPA, we evaluate the RHS over uniform configurations. The derivative is then easy to
compute, leading to:

Ż= (Γ
(3)
k (0,0,0))2

∣∣∣∣
M=κ

d

dp2

∑
q

ṙk(q
2)G2(q2)G((q+ p)2)

∣∣∣∣
M=

√
2κ

. (B.5)

The expression of Γ(3)
k (0,0,0) can be easily obtained by taking the third derivative of the effective potential

with respect toM:

Γ
(3)
k (0,0,0) = 3 u4

√
2κ+ u6(2κ)

3/2. (B.6)

Note that the renormalized vertex ¯Γ(3)
k(0,0,0) has to be defined as (the factor Z will be explained below):

Γ
(3)
k (0,0,0) = Z3/2(k)3−din/2Γ̄

(3)
k (0,0,0). (B.7)

Now, we have to compute integrals like:

In(k,p) =

ˆ
dq

(2π)din
(q2)n

θ(k2 − q2)

Z(p+ q)2 +Z(k2 − (p+ q)2)θ(k2 − (p+ q)2)+M2(g,h,κ)
. (B.8)

We focus on small and positive p along axis 1. The integral decomposes as In(k,p) = I(+)
n (k,p)+ I(−)

n (k,p),
where:

I(+)
n (k,p) =

ˆ
q1>0

dq

(2π)din
(q2)n

θ(k2 − q2)

Z(p+ q)2 +Z(k2 − (p+ q)2)θ(k2 − (p+ q)2)+M2(g,h,κ)
, (B.9)

and

I(−)
n (k,p) =

ˆ
q1<0

dq

(2π)din
(q2)n

θ(k2 − q2)

Z(p+ q)2 +Z(k2 − (p+ q)2)θ(k2 − (p+ q)2)+M2(g,h,κ)
. (B.10)
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Because p> 0, in the negative branch, (q1 + p)2 < k2 −
∑

i=2 q
2
i , we have:

I(−)
n (k,p) =

1

Zk2 +M2
×
ˆ
q1<0

dq

(2π)din
(q2)n, (B.11)

which is independent of p. In the positive branch, in contrast, we get:

I(+)
n (k,p) =

1

Zk2 +M2

ˆ √
k 2−q2⊥−p

0

dq

(2π)din
(q2)n

+

ˆ √
k 2−q2⊥

√
k 2−q2⊥−p

dq

(2π)din
(q2)n

Z(q1 + p)2 +M2(q⊥)
,

(B.12)

where the bounds in the integrals refer to the integral over coordinate 1, andM2(q⊥) :=M2 +Zq2⊥, for
q⊥ := (q2, · · · ,qdin). Note that we omitted the Heaviside functions. Taking the first derivative with respect to
p, we get:

d

dp
I(+)
n (k,p) =−2Z

ˆ √
k 2−q2⊥

√
k 2−q2⊥−p

dq

(2π)din
(q2)n

(q1 + p)

(Z(q+ p)2 +M2)2
θ(k2 − q2). (B.13)

Next, we take the second derivative and we set p= 0. The contribution coming from derivative of the interior
of the integral vanishes, because the remaining integration over q⊥ is empty. Thus, only the variation of the
bound contributes; assuming θ(0) = 1, we get after a tedious calculation:

1

2

d2

dp2
I(+)
n (k,0) =−Z

(k2)n+d/2

(2π)din
H(din)

1

(Zk2 +M2)2
, (B.14)

where:

H(din) :=
π

din+1
2

din + 1

Γ
(
din
2

)
Γ
(
din+1
2

)
Γ
(
din−1

2

) (B.15)

Therefore, we find:

Zηk =
(3 u4

√
2κ+ u6(2κ)3/2)2

(Zk2 +M2)2
(
2Zk2I ′ ′0 (k,0)+Zηk(k

2I ′ ′0 (k,0)− I ′ ′1 (k,0))
)
. (B.16)

As for the strict LPA, we introduced dimensionless quantities (and then, explain the origin of the factor Z in
front of (B.7)). Now, we have to take into account the wave function renormalization. Recovering 1/2 in
front of the kinetic action requires:

u4 = ū4Z
2k4−din , u6 = ū6Z

3k6−2din , ū2 = ū2Zk
2, (B.17)

where in this expression ū2 =−2u4 κ refers to the effective mass. This relation implies κ= κ̄kdin−2Z−1. After
some simplifications, we get:

ηk =−H(din)
(3 ū4

√
2κ̄+ ū6(2κ̄)3/2)2

(1+ M̄2)4
. (B.18)

The explicit expression for M̄
2
can be easily derived within the LPA:

M̄2 = Ū ′
k(κ̄)+ 2κ̄Ū ′ ′

k (κ̄) = 2κ̄ū4. (B.19)

Then solving for ηk, we get:

ηk =−H(din)
(3 ū4

√
2κ̄+ ū6(2κ̄)3/2)2

(1+ 2κ̄ū4)4
. (B.20)

□

37



Mach. Learn.: Sci. Technol. 3 (2022) 015027 H Erbin et al

B.2. Discussion about claim 1
The regulator is obviously positive definite as soon asm2 > 0. For p ∈ [0,k], becausem2(ep

2/m2 − 1)≥ p2, we
must have rk(p2)≤ k2(1− p2/k2), therefore:

rk→Λ(p
2 ≪ Λ2)≲ Λ2 , rk→Λ(p

2 ∼ Λ)∼ 0+. (B.21)

Thus, low momenta fluctuations are frozen, decoupling from long distance physics, whereas high momenta
modes are unchanged and integrated out. Note that the last condition makes rk an infrared regulator, which
prevents infrared divergences along the flow. Finally, rk→0 → 0+, meaning that the original model is formally
recovered in the deep infrared limit. All these properties ensure that the boundaries interpolation conditions
Γk→∞ → S and Γk→0 → Γ holds using rk. Now, let us show that rk is optimal in the Litim’s sense [93]. The
Wetterich equation (61) can be singular if the effective propagator diverges, or equivalently, if its inverse

Γ
(2)
k + rk vanishes. To avoid this difficulty, rk has to prevent the existence of zero-modes. In other words, the

RG requires the existence of a ‘gap’, and Litim’s criterion for optimization is to maximize the gap. This can be
done from the observation that only the field-independent part of the inverse 2-point function is relevant to
discuss optimization, i.e. F(p2) := p2 +Z−1

k rk(p2), in view to establish a (weakly) model-independent
criterion. It is suitable to introduce y= p2/k2. The optimal value for the gap, C0, is:

C0 :=max
rk

min
y≥0

k2F(y). (B.22)

By construction, the regulator is expected to be efficient for p2 ∼ k2, and we fix the normalization such that
F(y= α) = 1 for some α ∈]0,1[. For a large enough family of regulators, this condition imposes that C0 ≤ 1.
If F(y) reaches its absolute minimum for y= 0, the regulator cannot be optimal from definition. Thus we
may have F(0)≥ C0. Without loss of generality we may choose F(0)≥ 1. For a regulator which attributes the
same size to the IR fluctuations p2 < k2, this reduces to an equality; this is the case for the regulator (107).

Indeed, in that case F(y) = m2

k 2 e
k 2/m2

for y≤ 1, F(y) = m2

k 2 e
yk 2/m2

for y≥ 1: the previous argument holds, up

to the normalization factor m2

k 2 e
k 2/m2

.

B.3. Proof of proposition 2

Because we focus on the symmetric phase, odd effective vertices have to vanish identically Γ(n)
k = 0 as

n= 2p+ 1. Moreover, the effective propagator Gk(p,p ′) has to be diagonal:
G−1
k (p,p ′) = (gk(p2)+ rk(p2))δ(p+ p ′). From our ansatz, gk(p) is given by:

gk(p
2) =m2(k)ep

2/m2

=m2 + p2 +K(p2), (B.23)

where:

K(p2) := p2
∞∑
n=1

1

n!

(p2)n

(m2)n
. (B.24)

Taking the second derivative of the exact RG equation (61), we get for ġk:

ġk(p
2) =−1

2

ˆ
dq

(2π)din
ṙk(q

2)(gk(q
2)+ rk(q

2))−2Γ
(4)
k (p,−p,q,−q). (B.25)

Because the windows of momenta allowed by the function ṙk(q2) is limited to the region q2 < k2 by

construction, the symmetric function Γ
(4)
k (p,−p,q,−q) =: fk(p,q) can be expanded in powers of q/k. At

leading order, setting q= 0 and taking into account the definition 1, the equation simplifies as:

ġk(p
2) =−1

2

e−2k 2/m2

(m2)2
fk(p,0)

ˆ
dq

(2π)din
ṙk(q

2). (B.26)

The derivative of the regulator can be computed from the definition 1 as well. We get, for p2 < k226:

ṙk(p
2) = 2k2ek

2/m2

+ ṁ2

[
ek

2/m2

(
1− k2

m2

)
−
(
1− p2

m2

)
ep

2/m2

]
. (B.27)

In the RG transformation, a rescaling of the lattice is required after partial integration of degrees of freedom
to ensure preservation of the IR physics. This is equivalent to assuming the existence of a proper rescaling of

26 From its definition, the regulator vanishes for p2 > k 2, and it is also the case for its derivative.
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the coupling, turning the flow equation in an autonomous system. From the equation above, we see in
particular that the mass has to be rescaled as27:

m2(k) = k2ū2(k), (B.28)

and the rescaling for the couplings f(p,0) and gk(p2) follows:

fk(p,0) = k4−din̄fk(p/k,0) , gk(p
2) = k2ḡk(p

2/k2), (B.29)

with the conditions:

f̄k(0,0)≡ ū4 , ḡk(0)≡ ū2, (B.30)

respectively defining the local 4-point coupling and effective mass. Within these dimensionless couplings,
equation (B.27) becomes:

ṙk(p
2) = 2k2e1/ū2 + k2(β2 + 2ū2)

[
e1/ū2

(
1− 1

ū2

)
−
(
1− p2/k2

ū2

)
ep

2/k 2ū2

]
, (B.31)

where β2n := ˙̄u2n. Within this approximation, and introducing x := p/k, the flow equation for ġk(p2) takes
the form:

ġk(x2)

k2
=− e−1/ū2

ū22
f̄k(x,0)

ˆ
dy

(2π)din

[
1+

β2 + 2ū2
2

((
1− 1

ū2

)
−
(
1− y2

ū2

)
e
y 2−1
ū2

)]
, (B.32)

the integral being restricted in the interior of the sphere y2 < 1. Thus, defining:

Fn(ū2) := din

ˆ 1

0
rdin+2n−1e

r2−1
ū2 dr, (B.33)

the previous equation reads:

ġk(x2)

k2
=

e−1/ū2

ū22
f̄k(x,0)Kdin

[
β2 + 2ū2

2

(
F0 −

F1
ū2

)
−
(
1+

β2 + 2ū2
2

)(
1− 1

ū2

)]
. (B.34)

From this equation, we easily deduce that f̄k(x,0)must be a function of x2. Setting x= 0 on both sides, we get
an algebraic closed equation for β2:

β2 + 2ū2 =−Kdin
ū4e−1/ū2

ū22

[(
1+

β2 + 2ū2
2

)(
1− 1

ū2

)
− β2 + 2ū2

2

(
F0 −

F1
ū2

)]
. (B.35)

Solving it, we get:

β2 =−2ū2 + 2Kdin ū4
(1− ū2)2 + ū2(ū2F0 − F1)

2ū32e
1/ū2 −Kdin ū4 ((1− ū2)+ (ū2F0 − F1))

. (B.36)

The solution exhibits a singularity, which has to be taken into account when solving the flow equation.
Through the definition (B.24), the solution to this equation provides gk(p2). Taking into account that, we
find from the chain rule:

ġk(x2)

k2
= 2ḡk(x

2)− 2x2 ḡ ′k(x
2)+ ˙̄gk(x

2), (B.37)

where ḡ ′k := ∂ḡk(x2)/∂x2. We thus obtain for f̄k(x,0):

f̄k(x,0) =
ū2(ū2 − x2)(2ū2 +β2)e(1+x 2)/ū2

Kdin

[
β2+2ū2

2

(
F0 − F1

ū2

)
−
(
1+ β2+2ū2

2

)(
1− 1

ū2

)] . (B.38)

27 See also the discussion at the beginning of the section 3.3.
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These equations depend on local couplings ū2 and ū4. The flow of ū2 is fixed by the flow equation (B.35), but
requires the knowledge of ū4. It can be obtained using standard LPA, equations (76) and (77) for a sixtic
truncation, which discard contributions or order 1/N3 from the N-scaling. We get, for ū4 and ū6:

β4 =−(4− din)ū4 − Lk(ū2)

(
ū6e−2/ū2

ū22
− 6ū24e

−3/ū2

ū32

)
, (B.39)

β6 =−(6− 2din)ū6 − Lk(ū2)

(
90 ū34e

−4/ū2

ū42
− 30 ū6ū4e−3/ū2

ū32

)
, (B.40)

where:

Lk(ū2) := e1/ū2Kdin

[
β2 + 2ū2

2

(
F0 −

F1
ū2

)
−
(
1+

β2 + 2ū2
2

)(
1− 1

ū2

)]
. (B.41)

Finally, from the flow equation for Γ(4)
k (p1,p2,p3,p4) (equation (76)), setting p1 =−p2 = p and p3 = p4 = 0,

we get:

(4− din)̄fk(x,0)− 2x2 f̄
′
k(x,0)+

˙̄fk(x,0) = Lk(ū2)

(
6(ū4 f̄k(x,0)+Rk(x))e−3/ū2

ū32
− h̄k(x)e−2/ū2

ū22

)
, (B.42)

where:

hk(p) := Γ
(6)
k (p,−p,0,0,0,0) , h̄k(x) := k2din−6hk(p). (B.43)

For reader familiar with QFT, the origin of the function Rk(x) can be traced from the s-, t- and u-channels. In

fact, the (Γ(4)
k )2 contributions have the following structure (the intermediate fat dotted edge materializing

the effective loop between effective vertices, see equation (76)):

The first term corresponds to ū4 f̄k(x,0), the second defines Rk(x). A direct inspection shows that
Rk ∼

´
dq ṙk(q2)Gk(−q− p)Gk(q), which becomes small for p large enough. We thus obtain the

approximation for h̄k(x) for x large enough:

h̄k(x)≈
(
6(ū4)e−1/ū2

ū2
− ū22(4− din)

Lk(ū2)
e2/ū2

)
f̄k(x,0)+ e2/ū2 ū22

2x2 f̄
′
k(x,0)−

˙̄fk(x,0)

Lk(ū2)
. (B.45)

□

B.4. Discussion about claim 2
The 4-point function Γ

(4)
k (p1,p2,p3,p4) has to be symmetric under any permutation of the four external

momenta p1, p2, p3 and p4. Moreover, because we assume local interactions as building blocks, external

momenta have to be conserved: p1 + p2 + p3 + p4 = 0. Let us assume that Γ(4)
k is the analytic continuation

with respect to some couplings from a perturbative solution Γ
(4)
k,pert, defined as the formal sum of an

asymptotic perturbative series:

Γ
(4)
k,pert(p1,p2,p3,p4) =

∑
G∈G4

(∏
υ∈G

g2n(υ)

)
AG(p1,p2,p3,p4), (B.46)

where the first sum runs over one-particle irreducible (1PI) Feynman diagrams G4 having four external
points. The product runs over vertices υ ∈ G, 2n(υ) denoting the number of fields involved in the interaction
having coupling constant g2n(υ). Finally,AG is the Feynman amplitude associated with the graph G. Note
that all Feynman amplitudes arise with a global Dirac delta δ(p1 + p2 + p3 + p4) ensuring momentum
conservation. We recall that Feynman diagrams provide a graphical representations of the Wick contractions
involved in the perturbative expansion around the Gaussian theory. A typical Feynman graph is a set of
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vertices and edges, vertices corresponding to interactions and edges to the Wick contractions between pairs
of fields. The momentum dependence of the 4-point function can be investigated from the structure of
Feynman graphs labeling its perturbative expansion. First, we assume that the the theory involves only

4-points vertices. At one loop, Γ(4)
k,pert(p1,p2,p3,p4) has the following structure:

Γ
(4)
k,1-loop(p1,p2,p3,p4) = δ(p1 + p2 + p3 + p4)

4∑
j=2

γ1-loop(p1 + pj), (B.47)

each term corresponding to the allowed permutations of the external momenta28. Explicitly, the relevant
one-loop diagrams have the following structure:

the loop being proportional to
´
dqK(q2)K((q+ p1 + p2)2). It can be easily checked that the decomposition

(B.47) keeps the same form after including sixtic interactions. Our aim is to prove that such a decomposition

remains a suitable approximation for Γ(4)
k beyond one-loop. To this end, we will make use of a

renormalization group argument, using the explicit expression (B.38). Assuming that (B.47) holds beyond
one loop, and there exists a function γk(p) such that:

Γ
(4)
k (p1,p2,p3,p4) = δ(p1 + p2 + p3 + p4)

4∑
j=2

γk(p1 + pj). (B.49)

Combining it with the relation (B.38), we get:

2γk(p)+ γk(0) = fk(p), (B.50)

and fk(0)≡ u4 = 3γk(0), thus:

γk(p) =
1

2
fk(p)−

1

6
u4. (B.51)

The flow equation for Γ(4)
k (p1,p2,p3,p4) reads graphically as:

the cyclic permutation covering the three pairings (p1,p2), (p1,p3) and (p1,p4), the solid black edge
materializing the effective propagator ṙk(p2)Gk(p2), whereas the dotted edge corresponds to Gk(p2). Let us

investigate the structure of the (Γ(4)
k )2 contribution. From our assumption, and neglecting the dependence of

the effective vertex on the momentum q running through the effective loop, we get:

28 The so called s-, t- and u-channels.
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where L(2)k (p1 + p2) :=
´
dqṙk(q2)Gk((q+ p1 + p2)2)Gk(q2). For p2i ’s close to the running horizon

ξ−2(k) := k2 u2(k), fk(p) becomes small as the explicit expression (B.38) shows. Thus γk(pi)∼−u4/6,

and (Γ
(4)
k )2 contributions ensure stability of the assumption about Γ(4)

k . To check consistency with Γ
(6)
k , we

have to consider the corresponding flow equation:

up to permutation of the external momenta. Assuming we are close to the quartic sector, we focus on the last
contribution. Setting p5 =−p6 = q, we have two relevant configurations to investigate. The first one is for p5
and p6 hooked to the same vertex. In that case, the loop depends only on two momenta, hooked to another
vertex, say p1 + p2 in the following:

where we discarded the dependence of the effective vertices on the momentum running through the effective
loop, and we assumed γk(p) = γk(−p). Such a contribution in the first term on the RHS of the equation

(B.52) does not break the ansatz for Γ(4)
k , the remaining momentum q could be set to zero outside of the

tadpole. The second configuration is for p5 and p6 hooked to different effective vertices. It is however easy to
check that for large external momenta with respect to the IR cut-off k, these contributions are suppressed.
For instance, we have:

and for p24 large enough with respect to k, this contribution is less relevant than the first in the flow equation

for Γ(4)
k . From the same argument, it is easy to check that the second kind of contributions in the flow of

Γ
(6)
k , involving Γ(6)

k and Γ
(4)
k does not break the ansatz for Γ(4)

k in the range of momenta that we consider.
□
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