
Machine Learning: Science and Technology

PAPER • OPEN ACCESS

Automatic differentiation to simultaneously identify
nonlinear dynamics and extract noise probability
distributions from data
To cite this article: Kadierdan Kaheman et al 2022 Mach. Learn.: Sci. Technol. 3 015031

View the article online for updates and enhancements.

You may also like
Fast and exact Hessian computation for a
class of nonlinear functions used in
radiation therapy treatment planning
R van Haveren and S Breedveld

-

Implementation of Dual Number Automatic
Differentiation with John Newman’s BAND
Algorithm
Nicholas W. Brady, Maarten Mees,
Philippe M. Vereecken et al.

-

Calculating measurement uncertainty
using automatic differentiation
B D Hall

-

This content was downloaded from IP address 106.213.28.225 on 05/07/2023 at 12:08

https://doi.org/10.1088/2632-2153/ac567a
https://iopscience.iop.org/article/10.1088/1361-6560/ab1e17
https://iopscience.iop.org/article/10.1088/1361-6560/ab1e17
https://iopscience.iop.org/article/10.1088/1361-6560/ab1e17
https://iopscience.iop.org/article/10.1149/1945-7111/ac3274
https://iopscience.iop.org/article/10.1149/1945-7111/ac3274
https://iopscience.iop.org/article/10.1149/1945-7111/ac3274
https://iopscience.iop.org/article/10.1149/1945-7111/ac3274
https://iopscience.iop.org/article/10.1088/0957-0233/13/4/301
https://iopscience.iop.org/article/10.1088/0957-0233/13/4/301

Mach. Learn.: Sci. Technol. 3 (2022) 015031 https://doi.org/10.1088/2632-2153/ac567a

OPEN ACCESS

RECEIVED

30 October 2021

REVISED

9 January 2022

ACCEPTED FOR PUBLICATION

17 February 2022

PUBLISHED

8 March 2022

Original Content from
this work may be used
under the terms of the
Creative Commons
Attribution 4.0 licence.

Any further distribution
of this work must
maintain attribution to
the author(s) and the title
of the work, journal
citation and DOI.

PAPER

Automatic differentiation to simultaneously identify nonlinear
dynamics and extract noise probability distributions from data
Kadierdan Kaheman1,∗, Steven L Brunton1 and J Nathan Kutz2
1 Department of Mechanical Engineering, University of Washington, Seattle, WA 98195, United States of America
2 Department of Applied Mathematics, University of Washington, Seattle, WA 98195, United States of America
∗ Author to whom any correspondence should be addressed.

E-mail: kadierk@uw.edu

Keywords: automatic differentiation, denoising, nonlinear dynamics, optimization, sparse identification, machine learning,
discrepancy modeling

Abstract
The sparse identification of nonlinear dynamics (SINDy) is a regression framework for the discovery
of parsimonious dynamic models and governing equations from time-series data. As with all
system identification methods, noisy measurements compromise the accuracy and robustness of
the model discovery procedure. In this work we develop a variant of the SINDy algorithm that
integrates automatic differentiation and recent time-stepping constrained motivated by Rudy et al
(2019 J. Computat. Phys. 396 483–506) for simultaneously (1) denoising the data, (2) learning and
parametrizing the noise probability distribution, and (3) identifying the underlying parsimonious
dynamical system responsible for generating the time-series data. Thus within an integrated
optimization framework, noise can be separated from signal, resulting in an architecture that is
approximately twice as robust to noise as state-of-the-art methods, handling as much as 40% noise
on a given time-series signal and explicitly parametrizing the noise probability distribution. We
demonstrate this approach on several numerical examples, from Lotka-Volterra models to the
spatio-temporal Lorenz 96 model. Further, we show the method can learn a diversity of probability
distributions for the measurement noise, including Gaussian, uniform, Gamma, and Rayleigh
distributions.

1. Introduction

The data-driven discovery of governing equations is an emerging field within the machine learning and
artificial intelligence communities. From traditional model regression techniques [1–5] to sparse regression
modeling [6–10], dynamic mode decomposition [11, 12], neural networks (NN) [13–19, 19, 32], genetic
algorithm [20, 21] or even Koopman modeling techniques [22–24], a diversity of methods are emerging that
transform time-series data (or spatio-temporal data) into representations of governing equations of
motion [25–31]. The interpretability and generalizability of these discovered equations of motion are critical
for understanding, designing, and controlling complex systems. As such, the sparse identification of nonlinear
dynamics (SINDy) [7] framework provides a compelling regression framework since discovered models are
interpretable and parsimonious by design. As with all system identification algorithms, noisy measurements
compromise the accuracy and robustness of the model discovery procedure. Moreover, many optimization
frameworks rely explicitly on the assumption of Gaussian noise, which is rarely true in the real world.
Recently, Rudy et al [32] developed a novel optimization framework for separating signal and noise from
noisy time-series data by identifying a deep NN model for the signal from numerical time-stepping
constraints such as a Runge-Kutta. In this work, we build on this framework and leverage automatic
differentiation [33] in the optimization procedure to simultaneously denoise data and identify sparse
nonlinear models via SINDy. This new architecture yields significant improvements in model discovery,
including superior separation of the signal from noise while simultaneously characterizing the noise
distribution.

© 2022 The Author(s). Published by IOP Publishing Ltd

https://doi.org/10.1088/2632-2153/ac567a
https://crossmark.crossref.org/dialog/?doi=10.1088/2632-2153/ac567a&domain=pdf&date_stamp=2022-3-8
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0003-2279-2793
https://orcid.org/0000-0002-6565-5118
https://orcid.org/0000-0002-6004-2275
mailto:kadierk@uw.edu

Mach. Learn.: Sci. Technol. 3 (2022) 015031 K Kaheman et al

SINDy has emerged as a flexible and promising architecture for model discovery due to its inherent
parsimonious representation of dynamics. The SINDy framework relies on sparse regression on a library of
candidate model terms to select the fewest terms required to describe the observed dynamics [7]. Specifically,
SINDy is formulated as an over-determined linear system of equations Aξ = b, where A is a library matrix, b
represents the measurement data, and ξ represents the sparse selection vector, and the sparsity of the solution
is promoted by the ℓ0-norm ∥ξ∥0. Thus sparsity is a proxy for parsimony, interpretability, and
generalizability. Measurement noise, however, is always present, and it corrupts the ability of the SINDy
regression framework, and indeed any other model discovery paradigm, to accurately extract governing
models.

There are many variants of sparse regression, all of which typically attempt to approximate the solution
to an NP-hard, ℓ0-norm penalized regression. Sparsity-promoting methods like the LASSO [34, 35] use the
ℓ1-norm as a proxy for sparsity since tractable computations can be performed. The iterative least-squares
thresholding technique of the SINDy algorithm promotes sparsity through a sequential procedure. Recently,
Zhang and Schaeffer [36] have provided several rigorous theoretical guarantees on the convergence of the
SINDy algorithm. Specifically, they proved that the algorithm approximates local minimizers of an
unconstrained ℓ0-penalized least-squares problem, which allows them to provide sufficient conditions for
general convergence, the rate of convergence, and conditions for one-step recovery. Using a relaxed
formulation, Champion et al [37] show how the SINDy regression framework can accommodate additional
structure, robustness to outliers, and nonlinear parameter estimation using the sparse relaxed regularized
regression (SR3) formulation [38]. SINDy results in interpretable models, and it has been widely applied in
many scientific disciplines [39–54]. Moreover, it has been extended to incorporate control [55, 56], rational
or implicit dynamics [10, 57, 58], partial differential equations [8, 59], parametric model dependencies [60],
discrepancy models [47, 48], multiscale physics [61], stochastic dynamics [62], constrained physics [42],
among many other innovations [9, 37, 40, 62–72]. The PySINDy Python package executes many of these
variants [73].

Despite its flexibility, modularity, and extensibility, SINDy and its variants typically rely on
approximating time-derivative of the measured time-series data. Computing derivatives of noisy
measurement data is known to be a challenging problem, with many algorithmic innovations and
mathematical architectures developed to produce accurate derivative approximations [74]. These methods
include finite-differences, spectral methods [75], spline smoothing, filtering procedures, polynomial fitting,
low-rank projection, and total variations, to highlight some of the diverse techniques employed for this
critical task of scientific computing. This task is made even more difficult, depending upon the noise
statistics. Gaussian noise is often easier to learn and characterize than noise distributions that have non-zero
means and are not symmetric. Ultimately, there is a need for methods that are robust to noisy measurements
and diverse probability distributions.

Recent innovations in automatic differentiation have enabled the solution of an optimization problem
directly related to the computation of the required derivatives [32]. Since its inception, automatic
differentiation has been widely used in the machine learning community to enable complicated optimization
problems without manually computing Jacobians [32, 33, 76–83]. More recently, this approach has been
used with NNs to separate a signal from noise and model the signal when a model is unknown [32], and to
improve Kalman smoothing when the governing equations are known [80]. The success of these algorithms
suggest that they could be leveraged for noise signal separation in the SINDy framework. In this work, we
extend this simultaneous de-noising and discovery approach to SINDy. Specifically, automatic differentiation
enables differentiation with respect to the functions in the SINDy library, thus circumventing a direct
differentiation of the noisy time-series data. The modified SINDy algorithm is more robust to noise and
further allows for an explicit characterization (discovery) of the underlying probability distribution of the
noise, something that current state-of-the-art methods cannot do and is a unique feature of our method.

In section 2, we illustrate the modified SINDy algorithm. In section 3, we show the comparison between
modified SINDy and noise signal separation approach based on the NN proposed by Rudy et al [32]. In
section 4, we show the use of modified SINDy on various numerical examples. We also show how modified
SINDy can be used to extract the noise distribution information and how it can be used in the discrepancy
modeling framework. In section 5, we show our conclusions and possible future improvements.

2. Methods

In what follows, we introduce the basic mathematical architecture behind the SINDy algorithm,
demonstrating explicitly its sensitivity to noisy measurements. This guides our introduction of the modified
SINDy for simultaneously learning the system model and denoising the signal.

2

Mach. Learn.: Sci. Technol. 3 (2022) 015031 K Kaheman et al

2.1. Sparse identification of nonlinear dynamics
The SINDy algorithm [7] provides a principled, data-driven discovery method for nonlinear dynamics of the
form

d

dt
x(t) = f(x(t)), (1)

where x(t) = [x1(t),x2(t), · · · ,xn(t)] ∈ R1×n is system states represented as a row vector. SINDy posits a set of
candidate functions that would characterize the right hand side of the governing equations. Candidate model
terms form the libraryΘ(X) = [θ1(X),θ2(X), · · · ,θp(X)] ∈ Rm×p of potential right hand side terms, where
X= [x(t1);x(t2); · · · ;x(tm)] ∈ Rm×n is formed bym row vectors. This then allows for the formulation of a
regression problem to select only the few candidate terms necessary to describe the dynamics:

argmin
Ξ

∥Ẋ−Θ(X)Ξ∥2 +λ∥Ξ∥0, (2)

where the matrixΞ= [ξ1,ξ2, · · · ,ξn] ∈ Rp×n is comprised of the sparse vectors ξi ∈ Rp×1 that select
candidate model terms. The amount of sparsity promotion is controlled by the parameter λ, which
determines the penalization by the ℓ0-norm. The θi(X) can be any candidate function that may describe the
system dynamics f(x(t)) such as trigonometric functions θi(X) = cos(X) or polynomial functions
θi(X) = X3, for example. By solving equation (2), we can identify a model of system dynamics:

d

dt
x(t) = f(x(t))≈Θ(x(t))Ξ. (3)

Many different optimization techniques can be used to obtain the sparse coefficientsΞ, such as sequentially
thresholded least squares [7, 36], LASSO [35], sparse relaxed regularized regression (SR3) [37, 38], stepwise
sparse regression (SSR) [84], and Bayesian approaches [58, 85].

In practice, noise-free measurements of x(t) are not available, and only the full state noisy measurement:

y(t) = x(t)+n(t), (4)

is provided to SINDy from sensors, where y(t) = [y1(t),y2(t), · · · ,yn(t)] ∈ R1×n is noisy measurement and
n(t) = [n1(t),n2(t), · · · ,nn(t)] ∈ R1×n is the noise added to true state. Thus, equation (2) then becomes:

Ẏ= Ẋ+ Ṅ=Θ(Y)Ξ=Θ(X+N)Ξ, (5)

where Y= [y(t1);y(t2); · · · ;y(tm)] ∈ Rm×n is noisy measurement matrix formed bym row vectors
measurement of size 1× n and N= [n(t1);n(t2); · · · ;n(tm)] ∈ Rm×n is noise matrix also formed bym row
vector of size 1× n. From equation (5), note that the solutionΞ is no longer the same Ξ shown in
equation (2) due to the presence of noise. Moreover, the noise will be magnified when approximating the
derivatives Ẋ by a factor ofO(1/dt) [8], and it will non-linearly corrupt the library matrixΘ. Extensive
research has been done to improve the robustness of the SINDy framework. The integral formulation [65]
and weak formulation [59, 71, 72, 86] improved the regression robustness by avoiding taking derivative of
noisy data. Other approaches, such as subsampling [87], increased the noise robustness of the SINDy
framework by doing regression on the subsampled measurement that has less noise. Corrupt data can also be
handled with methods from robust statistics [37, 64]. In the next section, we introduce an alternative
approach that simultaneously learns the noise N while using the denoised data to perform model
identification.

2.2. Simultaneously denoising and learning systemmodel
To improve the noise robustness of the SINDy regression, we determine the estimated noise n̂(t) ∈ R1×n as a
hyper-parameter and formulate N̂= [n̂(t1); n̂(t2); · · · ; n̂(tm)] ∈ Rm×n in order to optimize the difference
between the estimated derivative and system’s vector field such that:

ed = ∥ ˙̂X−Θ(X̂)Ξ∥22, (6)

where X̂= Y− N̂ is formed bym estimated true states x̂(t) ∈ R1×n, and ed is the derivative approximation
error. For details on calculating this error, please see appendix L. Note that X̂= [̂x(t1); x̂(t2); · · · ; x̂(tm)]
∈ Rm×n. When N̂= N, the effect of noise can be eliminated, and the accuracy of SINDy will be significantly
improved. However, there exist many trivial solutions for minimizing the equation (6) with two uncorrelated
optimization parameters N̂ and Ξ. Thus, an additional constraint is needed to regularize equation (6).

3

Mach. Learn.: Sci. Technol. 3 (2022) 015031 K Kaheman et al

The additional constraint proposed here uses the estimated vector field of the system model similar to the
one proposed by Rudy et al [32]. Equation (3) gives the estimateΘ(x(t))Ξ of the true vector field f(x(t)).
Integrating over a segment of time t j to tj+1 gives the integrated vector field, or flow map,

x(j+ 1) = F(x(j)) = x(j)+

ˆ tj+1

tj

Θ(x(τ))Ξ dτ. (7)

This can be generalized to integrate the system either forward or backward in time q steps. This gives:

x(j+ q) = Fq(x(j)) = x(j)+

ˆ tj+q

tj

Θ(x(τ))Ξ dτ. (8)

To obtain the x(j+ q) in equation (8), a numerical simulation scheme such as Runge-Kutta can be used. In
what follows, we employ a 4th-order Runge-Kutta method to simulate the dynamics forward/backward in
time q-steps. Similar to equation (8), when the noisy measurement data y is given, the estimated state
x̂= y− n̂ satisfies:

y(j+ q)− n̂(j+ q) = x̂(j+ q) = F̂
q
(x̂(j)) = x̂(j)+

ˆ tj+q

tj

Θ(x̂(τ))Ξ dτ, (9)

when n̂= n and the exact value of Ξ is known. Thus, by minimizing

es,j =

q∑
i=−q,i̸=0

ωi∥y(j+ i)− n̂(j+ i)− F̂i(x̂(j))∥22, (10)

the optimization parameters N̂ andΞ are coupled, resulting in additional structural constraint of the model.
The parameter ωi is used to account for the numerical error and is set to ωi = c|i|−1, where 0< c≤ 1 is a
constant (throughout this paper, we use c= 0.9). The use of ω suggests that the simulation error too far
ahead in the future, or too far backward in the past, should be penalized less due to the error of the numerical
simulation scheme. The error incurred by simulating the vector filed forward/backward on the entire
trajectory can be written as:

es =

m−q∑
j=q+1

es,j =

m−q∑
j=q+1

q∑
i=−q,i̸=0

ωi∥y(j+ i)− n̂(j+ i)− F̂i(x̂(j))∥22. (11)

Using subscripts to represent the time step, the final cost function is then:

L(Ξ, N̂) = es + ed =

m−q∑
j=q+1

q∑
i=−q,i̸=0

ωi∥yj+i − n̂j+i − F̂
i (
x̂j
)
∥22 + ∥ ˙̂X−Θ(X̂)Ξ∥22, (12)

which is the summation of the derivative approximation error ed and simulation error es. The optimization
problem to simultaneously denoise and learn the system model can then be written as:

Ξ, N̂= argmin
Ξ,N̂

L(Ξ, N̂),

s.t. (|Ξ|< λ) = 0.
(13)

The global optimal solution for equation (13) needs to satisfy N̂= N and f(x) =Θ(x)Ξ. However, the
global optimum of equation (12) is not unique, as appendix K suggests. To solve for equation (13), it is
necessary to calculate the Jacobian ∂L/∂N̂ and ∂L/∂Ξ, which is a difficult task to do analytically or
computationally. However, recent automatic differentiation packages such as Tensorflow [76] and Julia
Flux [88] make it possible to directly extract the gradients of L with respect to N̂ andΞ. Other alternatives
include JAX MD [89, 90]. This allows us to solve the optimization problem in equation (13) easily using
gradient descent method such as Adam [91]. Throughout this paper, we use the Tensorflow 2.0 and Adam
optimizer to solve the equation (13). Moreover, to enforce the sparsity of the identified model, a thresholding
approach [7] is used and the equation (13) is solved for N loop times (the sparsity is enforced to the model
structureΞ not the noise N). Each iteration uses the previous iteration’s optimization result N̂ as the initial
guess of the new iteration. The values of N̂ is also used to calculate the estimated state X̂, which is used to
calculate the new estimated values of the selection parameterΞ. Furthermore, if the elements in |Ξ| are
smaller than a threshold λ at the end of an optimization loop, those elements will be constrained to zero for

4

Mach. Learn.: Sci. Technol. 3 (2022) 015031 K Kaheman et al

Figure 1. This figure illustrates modified SINDy algorithm. The goal is to learn the system modelΘ(X)Ξ and noise N. The noise
is subtracted from the measurement to obtain the clean data. To achieve this, the estimated noise N̂ is set as an optimization
parameter and the cost function L(Ξ, N̂) is minimized. This optimization is performed 8 times, and the small values of |Ξ| is
enforced to be zero for the remainder of the optimization process. The proposed de-noising algorithm is related to the scheme of
Rudy et al [32], but embedded into the SINDy model discovery framework.

the remainder of the optimization process. Figure 1 illustrates this process, and appendix A shows the
detailed algorithm for simultaneous denoising and sparse model identification. Some guidance on the
selection of the hyper-parameters λ, q, and N loop is given in appendices B–D.

3. Performance comparison with neural network denoising approach

The advocated optimization framework of modified SINDy is compared with a NN denosing approach by
Rudy et al [32]. Additionally, the robustness to noise and the amount of data is considered.

3.1. Performance criteria
For ease of comparison, we use the same performance criteria developed by Rudy et al [32]. Specifically,
these are the vector field error Ef, the noise identification error EN, and the prediction error EF. The vector
filed error is:

Ef =

∑m
i=1

∥∥∥f(xi)− f̂(xi)
∥∥∥2
2∑m

i=1 ∥f(xi)∥
2
2

, (14)

which calculates the relative squared ℓ2 error between the true vector filed and identified vector field f̂. The
noise identification error is:

EN =
1

m

m∑
i=1

∥ni − n̂i∥22 , (15)

5

Mach. Learn.: Sci. Technol. 3 (2022) 015031 K Kaheman et al

which is the mean ℓ2 difference between the true noise N and identified noise N̂. The prediction error is:

EF =
1

∥X∥2F

m−1∑
i=1

∥∥∥xi − F̂i (x1)∥∥∥2
2
, (16)

and it calculates the difference between forward simulation trajectory and true trajectory. For comparison of
modified SINDy and recently published Weak-SINDy [72], as shown in appendix F, two more performance
criteria are used. The first one is the normalized parameter error:

Ep =
∥Ξ− Ξ̂∥2
∥Ξ∥2

, (17)

which reflects how much the identified parameters Ξ̂ is off from the true parametersΞ. The other one is the
success rate, which describes the percentage of identifying the model’s correct structure in multiple trials.

3.2. Robustness to noise
The Lorenz attractor is used as an example to test the noise robustness of the approach. The model of the
chaotic Lorenz is:

ẋ= σ(y− x),

ẏ= x(ρ− z)− y,

ż= xy−βz,

(18)

where σ= 10, ρ= 28, and β = 8/3. The Lorenz attractor is simulated with initial condition x0 = [5,5,25],
T= 25, and dt= 0.01. The prediction step is chosen as q= 3 for both approaches compared and Nloop = 6 for
our proposed method. Unless otherwise noted, Adam optimizer is used to optimize the problem with
maximum iteration set to 5000 for modified SINDy and 30 000 for NN approach [32]. Different magnitudes
of Gaussian noise are added to generate the noisy training data. The noise level is defined as:

Noise Level (%) =

√
var(Noise)

var(Signal)
× 100%=

std(Noise)

std(Signal)
× 100%. (19)

For each noise level, 10 different sets of noisy data are generated and used as data for both approaches.
The NN approach [32] uses the same set up as [32], with 3 hidden layers, and each layer having 64 neurons.
Moreover, the regularization parameter is chosen as 10−8, and the penalty for N̂ is chosen as 10−5. Unless
otherwise noted, we use the same set up for all the NNs in this paper. For modified SINDy, the library is
constructed with terms up to second order (not including the constant term). Moreover, the value of the
sparsity parameter λ varies based on the noise added. For most of the case, λ= 0.1. A Tikhonov
regularization approach is used to pre-smooth the noisy data as in [32], although we have found that
pre-smoothing does not affect the results appreciably when using zero-mean noise.

Figure 2 show the noise identification error of the NN approach [32] and the modified SINDy approach.
The vector field error and short term prediction error can be seen in figure 3. For all the noise levels,
modified SINDy correctly identified the Lorenz model. To calculate the prediction error, the identified model
is simulated 6 seconds forward in time, with dt= 0.01, for both modified SINDy and NN denoising
approach [32]. Figure 3 suggests that modified SINDy identified model has better performance when
simulated forward in time. Other useful way to determine the forward simulation accuracy is by using the
Lyapunov exponent of the model. However, unlike the standard way of defining the Lyapunov exponent [92],
where the parameters of the model are perfect and only initial conditions of the simulation is perturbed by ϵ,
in the situation shown in figure 3, we have the exact opposite. In figure 3, the parameters of the identified
system is off by ϵ while the initial conditions are perfectly known. Thus, some modification of the definition
of Lyapunov exponent is needed before it can be used to define the model forward simulation accuracy.
Appendix E shows noise robustness comparison between the modified SINDy and original SINDy [7]. In
general, the modified SINDy is about 2 times more robust than original SINDy [7]. A comparison between
modified SINDy and the recently developed Weak-SINDy approach [72] is presented in appendix F.

3.3. Robustness to data length
We also compare the performance of the NN denoising approach by Rudy et al [32] and modified SINDy
under different data usage with a fixed noise level. The minimum amount of data needed by modified SINDy
to correctly identify the system model is shown by using Lorenz attractor as an example. To perform the

6

Mach. Learn.: Sci. Technol. 3 (2022) 015031 K Kaheman et al

Figure 2. Top: Noise identification error of modified SINDy (labeled as SINDy) and NN denoising approach by Rudy et al [32].
The black circle represents the median of ten runs while the violin shape represents the distribution of error. The modified SINDy
approach shows better noise identification error. Bottom: Comparison between the average noise applied to the Lorenz system
and the noise identified by the two approaches. As shown on the left, both approaches can not produce the correct zero noise
result when no noise is applied, which happens since there is a tiny difference between the learned dynamics and true dynamics.

Figure 3. Top: The vector field error and prediction error of modified SINDy (labeled as SINDy) and NN denoising approach by
Rudy et al [32] is shown. The black dot is the median of the 10 runs, and the violin shape represents the distribution of the error.
Bottom: The simulated trajectory is shown with the initial condition chosen as x0 = [5,5,25].

numerical experiment, the same initial point, x0 = [−5,5,25], is used to generate noise-free data of different
temporal lengths. The time step is fixed at dt= 0.01 with 10% of Gaussian noise added to generate noisy
training data. The success rate of modified SINDy is calculated to indicate the minimum amount of data
needed to identify the correct system model. The prediction error is not shown since the simulation of the

7

Mach. Learn.: Sci. Technol. 3 (2022) 015031 K Kaheman et al

Figure 4. (a), (b): As the training data length increases, the vector field error and noise identification error of modified
SINDy (labeled as SINDy) and NN denoising approach by Rudy et al [32] decreases. (c) The modified SINDy can use 3.5 seconds
of data to identify the system model with 100% accuracy. There is a tiny drop in the success rate when the training data length is 5
seconds due to the choice of a fixed thresholding parameter. By using a larger thresholding parameter, the success rate can be back
to 100%. Moreover, since the NN is a black box model, we will not be able to determine whether it learned the correct symbolic
model or not, thus success rate of NN is not plotted. Bottom: a comparison of averaged true noise and identified noise by two
approaches is shown.

identified model in the low data limit is not stable. With a learning rate of 0.001, Adam is used to optimize
the problem with the prediction step set to q= 3 for both approaches. A fixed thresholding parameter
λ= 0.1 with Nloop = 6 is used for modified SINDy and the library is constructed with up to second order
terms (without constant term added). Figure 4 suggests that when the correct parameters and library is used
for modified SINDy, it will out-perform the NN denoising approach by Rudy et al given the same amount of
data.

4. Results

In this section, we demonstrate the ability of modified SINDy to separate signal and noise while learning the
system model. The Van der Pol oscillator will be used as the example test case to show that modified SINDy
can identify the correct distribution of the Gaussian noise added to the system. Additionally, we highlight
several other examples tested with modified SINDy and summarize the performance. Furthermore, as a
more advanced example, we show that modified SINDy can be used to separate non-Gaussian, non-zero
mean, and non-symmetric noise distributions from the dynamics. Finally, we show how modified SINDy can
be integrated to the discrepancy modeling approach [48].

4.1. Van der Pol oscillator
The Van der Pol oscillator is used as our test case to demonstrate the ability of modified SINDy to denoise
and learn the system dynamics simultaneously. The Van der Pol oscillator is given by:

ẋ= y,

ẏ= µ
(
1− x2

)
y− x,

(20)

where the nonlinear damping/gain parameter µ= 0.5 is used for demonstration purposes. The system is
simulated with initial condition [−2,1], T= 10, and dt= 0.01. The Adam optimizer with learning rate of

8

Mach. Learn.: Sci. Technol. 3 (2022) 015031 K Kaheman et al

Figure 5. Distribution of the noise learned by modified SINDy is shown.

0.001 is used for all noise levels. The parameters of modified SINDy are chosen as q= 1 and λ= 0.05, and the
library of candidate functions is constructed with polynomial terms up to third order (without constant
term). Three different levels of noise are applied and the distribution of identified noise is shown in figure 5.
Figure 5 shows that modified SINDy correctly identified the distribution of true noise.

4.2. Rössler attractor
The second example we use is the Rössler attractor that is governed by:

ẋ=−y− z,

ẏ= x+ ay,

ż= b+ z(x− c),

(21)

where a= 0.2, b= 0.2, and c= 5.7. The system is simulated with initial condition [3,5,0], T= 25, and
dt= 0.01. The Adam optimizer with learning rate of 0.001 is used for all noise levels. The parameters of
modified SINDy are chosen as q= 1 and λ= 0.05, and the library of candidate functions is constructed with
polynomial terms up to second order (with constant term). Three different levels of noise are applied and the
denoised signal is shown in figure 6. Figure 6 also shows the simulated trajectories of the identified models.
The initial condition [3,5,0], T= 25, and dt= 0.01 are used to simulate the identified models.

4.3. Lorenz 96 model
As our last example, we use the modified SINDy to identify Lorenz 96 model whose equation is given by:

ẋi = (xi+1 − xi−2)xi−1 − xi + F, (22)

for i= 1,2, . . . ,N. We assume x−1 = xN−1, x0 = xN, x1 = xN+1, and set forcing term F as 8 to generate chaotic
behavior. The number N is set as 4 such that the model has 6 states. The system is simulated with initial
condition [1,8,8,8,8,8], T= 25, and dt= 0.01. The Adam optimizer with learning rate of 0.001 is used for
all noise levels. The parameters of modified SINDy are chosen as q= 1 and λ= 0.1 (for 30% noise, λ= 0.05).
The library of candidate functions is constructed with polynomial terms up to third order (with constant
term included, 84 candidates in total). Three different levels of noise are applied and the denoised signal is
shown in figure 7 (for ease of visualization, only the first three states are shown). Figure 7 also shows the

9

Mach. Learn.: Sci. Technol. 3 (2022) 015031 K Kaheman et al

Figure 6. The modified SINDy is used to denoise the measurement of Rössler attractor while learning its model. The identified
model shows high accuracy when simulating forward.

Figure 7. The modified SINDy is used to denoise the measurement of Lorenz 96 system while learning its model.

simulated trajectories of identified models. The initial condition [1,8,8,8,8,8], T= 5, and dt= 0.01 are used
to simulate the identified models.

In figure 8, the effectiveness of modified SINDy is demonstrated on a number of canonical dynamical
systems models. For all examples, Gaussian noise with zero-mean is added to generate the noisy training
data, and Adam optimizer is used to perform the optimization. The models and other parameters used for
each example are summarized in appendix F. The modified SINDy correctly identified all the system model
and noise distribution regardless of the noise magnitude used.

10

Mach. Learn.: Sci. Technol. 3 (2022) 015031 K Kaheman et al

Figure 8. This plot shows the denoising ability of modified SINDy with different examples. Regardless of the noise percentage,
modified SINDy correctly identified all the system models.

4.4. Identification of noise distributions
The modified SINDy algorithm has the ability to to handle different kinds of noise distributions. Three
different kinds of noise distributions are used to demonstrate this: Gaussian, Uniform, and Gamma. To
generate the Gamma noise, its shape and scale are set to 1. The generated noise is multiplied by
Noise Percentage× var(Signal). The noise-free data of Van der Pol oscillator is generated the same way in
section 4.1. The prediction step is set to q= 2 and the sparsity parameter is set to λ= 0.15. Figure 9 shows the
distribution identified by modified SINDy. Figure 9 shows that learning the non-zero mean noise
distribution is more difficult than learning a zero-mean one. For better learning results of a non-zero mean
noise distribution, one can try the iterative learning approach shown in appendix H. Once the noise is
separated from the signal, an additional step can be taken to identify the distribution of noise from the
candidate distributions. This can be achieved by the fitter package in Python [93]. Appendix I shows more
details of this process.

4.5. Discrepancy modeling
Modified SINDy can be easily integrated with the discrepancy modeling framework of SINDy [48]. This is of
great practical value since it is often the case that parts of the dynamics is known. Suppose the
known (theoretical) right-hand side dynamics in equation (1) is g(x). Discrepancy modeling assumes that
the known model is not capable of modeling the data due to missing physics terms on the right-hand side.
Thus there is a mismatch between the derivative ẋ and the known dynamics g(x). The discrepancy modeling
approach tries to identify the missing dynamicsΘ(x)Ξ such that:

ẋ= f(x) = g(x)+Θ(x)Ξ. (23)

To illustrate this process, consider a system ẋ= f(x), whose model is given as:

ẋ=−10x+ 10y+ xy,

ẏ= 28x− xz− y+ 3z,

ż= xy− 8/3z.

(24)

11

Mach. Learn.: Sci. Technol. 3 (2022) 015031 K Kaheman et al

Figure 9. The ability of modified SINDy to handle different kinds of noise distribution is illustrated in this figure, and the Van der
Pol oscillator is used as an example. 10% of noise is generated and added to the clean signal. As this figure shows, modified SINDy
can identify different types of noise distribution correctly.

Figure 10. The modified SINDy can be easily integrated with the discrepancy learning method. The known structure g(X) can be
utilized while we aim to learn the discrepancy and denoising the measurement.

Equation (24) is simulated with the x0 = [5,5,25], T= 30, and dt= 0.005 to generate noise-free data.
Training data is produced by adding 10% Gaussian noise in order to create the noisy measurement. Assume
that the noisy measurement of equation (24) is given. Further assume that the dynamics is modified based on
g(x), which is given by:

ẋ=−9.5x+ 10.5y,

ẏ= 27.6x− 1.1xz− 0.9y,

ż= 1.05xy− 2.6z.

(25)

The difference between the equations (24) and (18) will be the discrepancy modelΘ(x)Ξ that modified
SINDy identifies. Note that this prior information of the dynamics, g(x), can be constrained to exist in the
modified SINDy library during the optimization process, and its parameters can be used as an initial guess of
the true parameters. Thus, the only thing we have to learn is the missing dynamics. Figure 10 illustrates this
process. In this example, the q= 4, λ= 0.4, and the learning rate of Adam optimizer is 0.001. Figure 10

12

Mach. Learn.: Sci. Technol. 3 (2022) 015031 K Kaheman et al

suggests that modified SINDy can be used to learn the discrepancy model when parts of the dynamics are
already known.

5. Conclusion and future work

In this work, we introduce a new learning algorithm that leverages automatic differentiation and sparse
regression for simultaneously: (1) denoising time-series data, (2) learning and parametrizing the noise
probability distribution, and (3) identifying the underlying parsimonious dynamical system responsible for
generating the time-series data. The method provides a critically enabling modification to the SINDy
algorithm for improving robustness to noise with less training data in comparison with the previously
developed NN denoising approach by Rudy et al [32]. Multiple numerical examples are shown to
demonstrate the effectiveness of the modified SINDy method for signal and noise separation as well as model
identification. It is also shown that the modified SINDy can be integrated with a discrepancy modeling
framework whereby prior information of the dynamical model can be used to help identify the missing
dynamics. Importantly, we have shown that modified SINDy can be used to learn various types of noise
distributions, including Gaussian, uniform, and non-zero mean noise distributions, such as a Gamma
distribution. Overall, the modified SINDy is a robust method with practical potential for handling highly
noisy data sets and/or when partial model information is known.

The modified SINDy is modular, allowing for many easily integrated improvements. An important
direction for development includes the incorporation of control inputs, since many systems of practical
interest are actuated, such as the pendulum on a cart system [10, 55]. Extending modified SINDy to consider
the impact of control will significantly expand its application domain. Moreover, it is also desirable to
incorporate the Weak formulation into the current framework. As shown in [59, 71, 72, 86], the parameter
error can be improved when a compact smooth support function is included into equation (8). In current
framework, the choice of support function in equation (8) is ω= 1, which is suboptimal. Thus, including the
Weak formulation into current framework can have great potential to improve the parameter error.
Improvements in computational speed are also desirable. In comparison with the sequential least-square
thresholding of the standard SINDy algorithm, the Adam optimizer is slow. There is the potential to use the
standard SINDy sparse regression algorithms to warm start the Adam optimization routine. There also exist
possibility to use alternative packages like JAX MD [89, 90] to perform automatic differentiation, and it
would be interesting to see the speed improvement it can achieve compared to Tensorflow. The modified
SINDy can also be integrated with SINDy-PI to identify rational or implicit dynamics, which is quite difficult
since the simulation error shown in equation (11) can not be calculated easily when the dynamics take a
rational form. In order to denoise the signal generated from rational system, the implicit ODE solver needs to
be used in order to simulate the implicit dynamics forward and backward in time. Currently, we do not have
an elegant way to implement the implicit ODE solver in Tensorflow, and our future research includes
extension of modified SINDy to identify rational dynamics. This is the case where the use of the NN
denoising approach [32] by Rudy et al is ideal.

Finally, it is important to improve the robustness of the modified SINDy algorithm when a large number
of library terms are used. Currently, the modified SINDy can not handle large libraries robustly due to the
non-convexity of the optimization problem. When the library is too large, the problem becomes unstable
without decreasing the optimizer’s learning rate. One potential solution is to simulate the dynamics with a
variable time step numerical simulation scheme instead of a fixed step scheme, as we used in this paper.
Although there are still many improvements to be made, we believe the introduction of modified SINDy will
help guide the use of automatic differentiation tools to improve the SINDy framework.

Data availability statement

The data that support the findings of this study are openly available at the following URL/DOI:
https://github.com/dynamicslab/modified-SINDy and https://doi.org/10.5281/zenodo.4060354 [94].

Acknowledgments

S L B acknowledges support from the Army Research Office (AROW911NF-19-1-0045) and the Air Force
Office of Scientific Research (AFOSR FA9550-18-1-0200). J N K acknowledges support from the Air Force
Office of Scientific Research (AFOSR FA9550-17-1-0329). We also acknowledge valuable discussions with
Samuel H Rudy, Jared Callaham, Henning Lange, Daniel A Messenger, and Benjamin Herrmann.

13

https://github.com/dynamicslab/modified-SINDy
https://doi.org/10.5281/zenodo.4060354

Mach. Learn.: Sci. Technol. 3 (2022) 015031 K Kaheman et al

Appendix A. Algorithm for simultaneously denoising and learning systemmodel

Algorithm 1.Modified SINDy.

Input: Y, Θ(∗), dt, λ, Nloop, ω

Output:Ξ, N̂
/∗ Initialize the value of N̂ ∗/
if SoftStart then

N̂= Y− smoothSignal(Y) // If the soft start is true, the estimated value of
noise is obtained by pre-smoothing the noisy signal.

else
N̂= zeros(size(Y)) // Else, the estimated value of noise is initialized using
zero matrix.

/∗ Initialize the value of Ξ ∗/
X̂= Y− N̂.
Calculate ˙̂X using X̂.

Ξ= SINDy(˙̂X,Θ(X̂),λ).
/∗ Simultaneously denoising and learning system model ∗/
while k< Nloop do

Optimize L(Ξ, N̂) shown in equation (13).
(|Ξ|< λ) = 0. // Constrain the elements in Ξ whose absolute value
smaller than λ as zero during the rest of optimization.
X̂= Y− N̂. // Get new estimate of true state.
Calculate ˙̂X using X̂. // Get new estimate of true derivative.
(|Ξ| ̸= 0) =Θ(X̂)\ ˙̂X. // Regress the dynamics on terms in Ξ that are not
constrained as zero.

Appendix B. Effect of thresholding parameterλ

Thresholding parameter λ is the most important parameter to tune in modified SINDy. The parameter λ will
determine the sparsity of the model structure. Its effect can be seen in figure 11. In figure 11, Lorenz equation
is simulated with [−5.0,5.0,25.0], dt= 0.01, and T= 25. 10% of Gaussian noise is added and Adam
optimizer with learning rate of 0.001 is used to denoise the signal. N loop is set to 8 and different values of λ is
used. For each λ, the numerical experiments is performed 10 times to calculate the median and distribution
of the error as shown in figure 11. Figure 11 suggests that the value of λmust be properly tuned. If the value
of λ is too small, the sparsity constraint will not be strong enough to enforce the correct model to be found.
Moreover,Ξ and N̂ will easily get stuck in the local minimum. If the value of λ is too large, the correct terms
can be wrongly eliminated and the resulting model structure will be wrong. If the model structure is wrong,
there will be huge difference between the identified noise N̂ and true noise N. To avoid swiping different
values of λ, our proposed method can be easily modified to use the stepwise sparse regression (SSR)
approach [62]. However, the use of SSR approach and its performance is not in the scope of this paper.

14

Mach. Learn.: Sci. Technol. 3 (2022) 015031 K Kaheman et al

Figure 11. This figure shows how the choice of sparsity parameter λ will effect modified SINDy performance. If λ is too small,
modified SINDy will not converge to the correct model in a short range of time and will be stuck in the local minimum. On the
contrary, if the sparsity parameter is too large, the identified model will miss the necessary term to build the correct model. Thus,
the value of λ needs to be tuned properly to determine the accurate model.

Appendix C. Effect of prediction step q

Figure 12 shows the effect of the prediction step q on the performance of NN denoising approach by Rudy
et al [32] and modified SINDy approach. The chaotic Lorenz system is used for comparison. The Lorenz
attractor is simulated by setting x0 = [−5,5,25], T= 25, and dt= 0.01. The noise level is set to 10% to
generate noisy data. Each prediction step is run for 10 times to calculate the median of the error. Adam
optimizer, with a learning rate of 0.001 is used to perform the optimization. N loop is set to 3. Figure 12
suggests that the performance of modified SINDy is not hugely affected by the prediction step q. However,
for the NN denoising approach shown in [32], there exist some value of q to achieve optimal performance.
Figure 12 also suggests the computational time of both approaches increase linearly as the value of q increase.
Thus, q can be chosen as a small value to save the computational time when using modified SINDy without
sacrificing too much of the performance.

15

Mach. Learn.: Sci. Technol. 3 (2022) 015031 K Kaheman et al

Figure 12. Left: the value of noise identification error, prediction error, and vector field error of NN denoising approach by Rudy
et al [32] and modified SINDy (labeled as SINDy) are shown as the value of q changes. In (a)–(d), the black circle shows the
median of the error of 10 runs while the violin shape represents the distribution of calculated result. Mid: The average of true
noise and identified noise of modified SINDy and NN approach is shown for four different prediction steps. Right: The
comparison of the simulated and true trajectory of modified SINDy and NN identified model is shown. The simulated trajectory
uses x0 = [−5,5,25] and dt= 0.01. The model is simulated for 3 seconds. It could be seen that modified SINDy has better
performance in this case. All the computation is performed on RTX 2080 GPU, with 32GBs of RAM and AMD Ryzen 7 2700X
Processor.

Appendix D. Effect of optimization iterationN loop

The parameter N loop determines how many times the thresholding optimization is performed. Figure 13
shows the effect of N loop on the noise identification error and vector field error using Lorenz attractor as an
example. The system is simulated by setting x0 = [5,5,25], T= 25, dt= 0.01, and q= 3. Adam optimizer,
with a learning rate of 0.001, is used to optimize the problem. Figure 13 suggests the performance of
modified SINDy will gradually converge in the end.

16

Mach. Learn.: Sci. Technol. 3 (2022) 015031 K Kaheman et al

Figure 13. Top left: As the number of optimization loop increases, the noise identification error asymptotically decreases and
converges to the optimal value. The black circle indicates the median of 10 runs while the violin shape represents error
distribution. Top right: As the number of loop increases, the vector field error gradually converges to a certain value. Bottom: The
average of the identified noise and true noise is shown for four different choice of optimization loops. As the number of loop
increases, the differences between the true noise and identified noise is minimized.

Figure 14. The maximum level of noise SINDy and modified SINDy can handle to generate the correct model structure is shown.
Tikhonov regularization approach is used to pre-smooth the noisy data. It can be seen that the modified SINDy is about 2 times
more robust than original SINDy [7].

Appendix E. Noise robustness comparison with SINDy

This section shows the noise robustness comparison of SINDy [7] and modified SINDy using Van der Pol
oscillator, Lorenz attractor, and Rössler attractor. Figure 14 shows the maximum noise percentage each
algorithm can handle to generate the correct model structure. For each noise level, 5 different noisy data sets
are generated and provided to both approaches. If the tested algorithm fails to identify the correct model
structure for any noisy data sets at a given noise level, we will assume it is not robust to noise at this level. For
SINDy, the derivative is computed using finite difference, and we show the effect of pre-smoothing the noisy
data on its performance. Note that no smoothing is applied for modified SINDy. The clean data for Lorenz
attractor, Van der Pol oscillator, and Rössler attractor is generated the same way shown in sections 3.2, 4.1,
and 4.2. For SINDy, the sparsity parameter λ is chosen as a hundred uniformly distributed values from 0.01
to the minimum of true parameters’ absolute value. For modified SINDy, q= 1 and Nloop = 8 are used for all
examples shown in figure 14. Table 1 shows other parameters we used for modified SINDy. Note that it is
possible to make modified SINDy work at a higher noise level by tuning its parameters. However, swiping
various parameters is quite computationally heavy for modified SINDy. Thus, the maximum noise level
modified SINDy can tolerate in figure 14 is a lower approximate.

17

Mach. Learn.: Sci. Technol. 3 (2022) 015031 K Kaheman et al

Table 1. Parameters used for modified SINDy in figure 14 under maximum noise it can tolerate. The constant term is included when
building the library for Rössler attractor and Lorenz 96 model but not for other examples. The parameter error is calculated using
equation (17).

Model Noise percentage
Library
order

Random
seed 0 1 2 3 4

Lorenz 30% 2 λ 0.3 0.2 0.3 0.1 0.1
Parameter Error 0.0046 0.051 0.031 0.032 0.077
Max Adam Iteration 10000 15000 15000 15000 15000

Rössler 40% 2 λ 0.1 0.22 0.22 0.1 0.1
Parameter Error 0.021 0.059 0.022 0.0062 0.020
Max Adam Iteration 15000 15000 15000 15000 15000

Van der Pol 30% 3 λ 0.1 0.22 0.22 0.1 0.1
Parameter Error 0.053 0.039 0.014 0.011 0.041
Max Adam Iteration 15000 15000 15000 15000 5000

Lorenz 96 40% 3 λ 0.1 0.15 0.09 0.215 0.1
Parameter Error 0.015 0.015 0.016 0.034 0.0075
Max Adam Iteration 7000 7000 10000 10000 5000

Appendix F. Noise robustness comparison withWeak-SINDy

This section shows the noise robustness comparison of Weak-SINDy [72] and modified SINDy using Lorenz
attractor as an example. The Lorenz attractor is simulated by setting x0 = [5,5,25], T= 25, dt= 0.01 and
dt= 0.001. For both approaches, the library is constructed using up to second order terms (without constant
term). Different percentage of noise is added to the clean data to generate noisy training data. The parameter
error and success rate is computed for both approaches. For modified SINDy, Adam optimizer with learning
rate of 0.001 is used to perform the optimization. The sparsity parameter is chosen as λ= 0.1 for most of the
time. If the modified SINDy can not produce the correct result, λ= 0.15 is used instead. When dt= 0.01 we
pre-smooth the data using approach mentioned in section 3.2 and no pre-smoothing is done when
dt= 0.001. For Weak-SINDy, when dt= 0.01, 200 test functions with polynomial order of 14 are used. The
width-at-half-max parameter rwhm = 8, and the support size s= 31. When dt= 0.001, 1000 test functions
with polynomial order of 2 are used. The rwhm = 16, and s= 30. 30 different sparsity parameters evenly
ranges from 0 to 0.95 are used, each generates a different candidate model for Weak-SINDy. The final model
we used to calculate the parameter error for Weak-SINDy is the model that has correct structure (with only
correct terms are selected from the library). If the Weak-SINDy fails to produce the model with correct active
terms, the model that predicts the test data best is used to calculate the prediction error, and the test data is
generated using initial condition x0,test = [−10,10,15] and simulated with T= 25 and dt= 0.01. The final
comparison result of the best model generated by Weak-SINDy and modified SINDy can be seen in figure 15.
Although figure 15 suggests the modified SINDy has better performance in high noise scenarios, it does have
higher computational cost. When using a second order library and the above mentioned parameters, the
Weak SINDy takes 0.073 second to compute the selection matrix Ξ̂ for a given sparsity parameters λ. On the
other hand, modified SINDy takes around 35 seconds to compute Ξ̂ for a given sparsity parameters while
Nloop = 3 and q= 1. Thus, Weak SINDy is two orders of magnitude faster than modified SINDy. Compared
to backslash operation (Matlab’smldivide) used in Weak SINDy, the ADAM optimizer used in modified
SINDy is slow. Our future work includes speeding up the modified SINDy calculation speed.

18

Mach. Learn.: Sci. Technol. 3 (2022) 015031 K Kaheman et al

Figure 15. This figure shows noise robustness comparison of modified SINDy and Weak-SINDy using Lorenz attractor as an
example. The effect of noise on the parameter error and successful identification rate is compared for both approaches. As it
shows in the figure, Weak-SINDy and modified SINDy has almost the same accuracy when dt= 0.001. However, when dt= 0.01,
the modified SINDy has a slightly higher success identification rate.

Table 2. Parameters used in figure 8.

Models Initial Condition Library Order Learning Rate T q λ

Van der Pol [−2,1] 3 0.001 10 1 0.05
Duffing [−2,−2] 3 0.001 25 1 0.05
Cubic [0,2] 3 0.001 25 1 0.08
Lotka-Volterra [1,2] 3 0.001 10 1 0.2
Lorenz [5,5,25] 2 0.001 25 3 0.1,0.15

Appendix G. Parameters used in figure 8

In this section, the models used to simulate the system in figure 8 are listed. The model used for simulating
the Duffing oscillator is:

ẋ= y,

ẏ=−p1y− p2x− p3x
3,

(26)

with p1 = 0.2, p2 = 0.1, and p3 = 1. The model used for simulating the Cubic oscillator is:

ẋ= p1x
3 + p2y

3,

ẏ= p3x
3 + p4y

3,
(27)

with p1 =−0.1, p2 = 2, p3 =−2, and p4 = 0.1. The model used for simulating the Lotka-Volterra system is:

ẋ= p1x− p2xy,

ẏ= p2xy− 2p1y,
(28)

with p1 = 1 and p2 = 0.5. Other parameters used for training the modified SINDy is summarized in table 2.
For all examples, Nloop = 5 and dt= 0.01.

Appendix H. Tips on learning non-zero mean noise

As section 4.4 suggests, learning non-zero mean noise distribution is much harder than learning the
zero-mean noise distribution. To achieve better performance on the non-zero mean noise distribution, we
propose an iterative learning approach. This approach can be summarized as follow: 1. Apply modified
SINDy to the noisy data, briefly learn the distribution of noise. 2. Subtract the mean of learned noise from
the noisy measurement, and use the new data to perform the learning. 3. Repeat the step 2 until the result
converges and the correct model is found. The Van der Pol oscillator is used to illustrate this approach, and
the clean data is generated the same way in section 4.1. 20% of Gamma noise is added to create the noisy
data. The parameters are set as q= 2, and λ= 0.15. Figure 16 demonstrate this approach. However, there is

19

Mach. Learn.: Sci. Technol. 3 (2022) 015031 K Kaheman et al

Figure 16. Iterative learning process is shown to tackle the non-zero mean noise distribution. By using this iterative process,
modified SINDy can tackle noise distribution with non-zero means.

no guarantee that this approach will work when the bias of noise is too large, learning the non-zero mean
noise is quite hard and careful tuning is needed. We find out using the soft start approach will also help the
denoising of non-zero mean noise.

Appendix I. Identifying noise distribution type

When the noise is identified, it might be interesting to learn what type of distribution the noise follows. To
illustrate this, the Van der Pol oscillator shown in equation (20) is simulated with initial condition [−2,1],
T= 50, and dt= 0.001 (for Gamma and Rayleigh noise distribution, dt= 0.01). Next, 10% of noise is added
to the simulation data to generate the noisy data. The noisy data is provided to modified SINDy to learn the
dynamics and identify the noise added to the signal. We set q= 2, λ= 0.15 (λ= 0.2 for Gamma noise). Adam
optimizer with learning rate equals to 0.001 is used, and the library order is set to 3. For all cases, the
modified SINDy correctly identified the model. As table 3 shows, five different noise distributions is used to
generate the noisy data. After the noise is identified, the distribution of noise is fitted into seven candidate
noise distributions, which are normal distribution, uniform distribution, Gamma distribution, Dweibull
distribution, Rayleigh distribution, Cauchy distribution, and Beta distribution. Next, the sum of the square
errors between the N̂ and the fitted distribution is calculated, and the distribution that produces the lowest
error is selected as the identified noise distribution. Notice that when there is not enough data provided, it is
totally possible that other kinds of distribution is misidentified as the true underlying distribution of noise.
The study of how many data points is needed to identify the correct distribution is beyond the scope of this
paper. The final result can be summarized in table 3.

20

Mach. Learn.: Sci. Technol. 3 (2022) 015031 K Kaheman et al

Table 3. The identified noise distribution versus the true distribution. For Gamma distribution, the parameter k represents shape and θ
represents the scale.

True distribution State True parameter Identified distribution Identified Parameters

Gaussian x µ= 0,σ = 0.1413 Gaussian µ̂= 0.003, σ̂ = 0.1451
y µ= 0,σ = 0.1439 Gaussian µ̂= 0.009, σ̂ = 0.1439

Uniform x µ= 0,σ = 0.1413 Uniform µ̂=−0.0717, σ̂ = 0.1438
y µ= 0,σ = 0.1439 Uniform µ̂=−0.0729, σ̂ = 0.1466

Gamma x k= 1, loc= 0,θ =0.1413
µ= 0.1413,σ = 0.02

Gamma k= 3.2714, loc=−0.095,θ = 0.0722
µ̂= 0.1409, σ̂ = 0.0211

y k= 1, loc= 0,θ =0.1439
µ= 0.1439,σ = 0.021

Gamma k= 10.49, loc=−0.3105,θ = 0.0432
µ̂= 0.1419, σ̂ = 0.0217

Dweibull x c= 2.07, loc= 0,
scale= 0.1413

Dweibull ĉ= 2.064, loc= 0.8× 10−5,
scale= 0.1408

y c= 2.07, loc= 0,
scale= 0.1439

Dweibull ĉ= 2.048, loc=−2.8× 10−5,
scale= 0.1438

Rayleigh x µ= 0.1775,σ = 0.0085 Rayleigh µ̂= 0.1775, σ̂ = 0.0085
y µ= 0.1779,σ = 0.0086 Rayleigh µ̂= 0.1779, σ̂ = 0.0086

Appendix J. Caveats of the approach

This section provides some tips on using modified SINDy.

(a) Properly design the library: building the correct library for the regression is the most important part of
this algorithm. If the library does not contain the terms included in the actual dynamics, the algorithm
will fail to produce the correct noise and systemmodel. Thus, whenever possible, one should include any
prior information of the dynamics to build the library. In general, the library needs to be large enough
to include all the terms that show up in the dynamics, and at the same time small enough to ensure
the robustness. The best way to design the library is an open problem in the SINDy framework. When
designing the library, one should use as much expert knowledge as possible. Usually, when some expert
knowledge of the system is known, it can help user avoid unnecessary higher order terms. For example,
when the signal is obtained from planetary system, then one might set the highest order of the library
to 3, since cubic term shows up in the Newton’s universal law of gravitation. When this kind of expert
knowledge is known, usually physical law governing the dynamic, it can give us some idea on how to pick
the highest polynomial term. When there’s no expert knowledge available, we advise the reader start with
simple second order library and see how the identified model performs. If the performance of the model
is not ideal, then use one order higher library until the well performedmodel is identified. However, keep
in mind that using a really high order library will make the optimization numerically sensitive, and at the
same time increases computational burden, as figure 17 shows. Do not expect the modified SINDy will
work on a library with hundreds or thousands of terms, it will break if the library is too large. For example,
when using the Lorenz example with above 20% noise, themaximumorder of the librarymodified SINDy
can handle is 4 (about 34 terms). This happens since the higher order terms in the library will tend to
mess up the forward and backward simulation and producing the nan cost, making the optimizer fails.
To leverage this, one can try to decrease the learning rate of the optimizer, pre-smooth the data, get better
initial estimate of Ξ, reduce the library size, or set optimization parameters type as float64. Moreover,
whether the constant term 1 should be included is case-specific. If the actual dynamics do not have a
constant term and the measurement noise is non-zero mean or has significant outliers, including the
constant basis in the library will make modified SINDy get stuck at the local minimum more easily. It is
advised that the user tries both the library with and without constant basis.

(b) Initial guess of N̂ andΞ: having a good initial guess of the estimated noise N̂ and estimated selection para-
meter Ξ can improve the condition of the optimization problem and allowing us tackle harder problem
with more library terms. If possible, the initial values of N̂ can be obtained by pre-smoothing the noisy
signal, which will provide a good start for the optimization problem, and it is also good for estimatingΞ.
If no other information is given, the initial guess of the N̂ can be set as zeros.

(c) The choice of N train and N loop: the proper choice of parameter N train and N loop is also important for the
successful identification of the system. The parameter N train determines how many times the gradient
descent step is applied. It also determines after how many gradient descent steps should the sparsity con-
straint be applied to Ξ. For the examples used in this paper, a good choice is Ntrain = 5000, when the
learning of ADAM is set to 0.001. As forN loop, it should be a sufficiently large number that make sure the
final answer converges. As seen in figure 13, after 8 iteration of loops, the noise identification error and

21

Mach. Learn.: Sci. Technol. 3 (2022) 015031 K Kaheman et al

Figure 17. This figures shows the computational time needed to run the ADAM optimizer for 5000 iterations with different
numbers of candidate functions. The Lorenz attractor is used as an example, with T= 25, dt= 0.01, and noise level set to 20%.
This computation is performed 8 times for each number of candidate functions. When the number of candidate function is 9, it
corresponds to second order library, and when the number of candidate function is 34, it corresponds to fourth order library. As
it shows, the computational time increases almost linearly with the number of candidate terms in the library.

vector filed error converged. This indicates a good choice ofN loop is the one that drives the noise identific-
ation error or vector filed error below certain user define threshold or makes the error indicator converge.
Moreover, when the noise level is high, N loop should also be set higher. For all the examples used in this
paper, Nloop = 8 is a good choice.

Appendix K. Global minimum of cost function equation (12)

The cost function shown in equation (12) has multiple global optimum solutions capable of achieving the
optimum cost L= 0. Moreover, as the dimensionality of the free parameters N̂ and Ξ exceeds the
dimensionality of the data Y, the optimization problem is ill-posed. Here, we summarize several global
optimal solutions of equation (12):

• The global optimum can show up if we can pick N̂+C= Y, which will result X̂= Y− N̂= C, where C is
a constant. Thus, when pickingΞ= 0, we can obtain a trivial solution that achieve the global optimum. In
this case, the structure of the identified model is the sparsest. To completely avoid this solution, one can add
additional penalty on the noise, such that it penalize N̂ to have large magnitude and avoid N̂= Y. However,
in practice we end up not adding this penalty term in our final optimization problem.We did this for several
reasons:

(a) It help us avoid adding additional tuning parameters which will make choosing the correct hyper para-
meter difficult.

(b) Usually, the thresholding parameter λ is picked so that it is smaller than themaximum value ofΞ. Thus,
it is unlikely to generate Ξ̂= 0.

(c) Moreover, the initial guess of N̂ is picked as zero or other values that is close to true N (when using
warm start). Thus, this initial guess of N̂ is quite small compared to the magnitude of Y, which means
sufficiently large iterations is needed to achieve N̂= Y when using ADAM optimizer. This indicates it
is more natural for N̂ converge to N rather than Y.

We recreated this situation in figure 18. To generate this global optimum,we used Lorenz systemwith second
order Polynomial library. The noisy data set is generated by using initial condition x0 = [5,5,25], dt= 0.01,
T= 25, and 20% of Gaussian noise (using random seed 4).We picked our thresholding parameter λ= 20 so
that we enforces Ξ̂= 0. Then we used ADAM optimizer with learning rate 0.001 to solve the optimization
problem with Nloop = 16 and Niter = 5000. As figure 18 shows, when enforcing Ξ̂= 0, we have N̂= Y+C.
Note, to generate this result, we did not add penalty term on the magnitude of noise.

• The second global optimum is the true system we wish to identify. For example, when N̂= N, we have
X̂= Y− N̂= X. Thus, if we can pick the correct selection vector Ξ̂=Ξ, we will achieve zero cost value.
This solution is what we are looking for.

• The third case is more interesting, and we find out it tends to happen when the noise added to the system is
extremely high (for example 40% to 100% of noise). In this case, our final solution will tend to converge to
a ‘sister system’ that has similar behavior to the actual system.
For example, suppose we are using a polynomial library, and we wish to identify the Lorenz system given its
noisy simulation data with 50% Gaussian noise added. The noisy data set is generated by using initial con-
dition x0 = [5,5,25], dt= 0.01, T= 25, and the Gaussian noise is generated using random seed 5.We picked
our thresholding parameter λ= 0.1 and ADAM optimizer with learning rate 0.001 to solve the optimiza-
tion problem with Nloop = 8 and Niter = 5000. As figure 19 shows, then final denoised system converged to

22

Mach. Learn.: Sci. Technol. 3 (2022) 015031 K Kaheman et al

Figure 18. This figures illustrates one of the global minimum solution to equation (12). As we can see, the estimated noise N̂
differs from the noisy measurement Y by a constant value C. This solution along with Ξ̂ forms one of the global optimum of cost
function equation (12). This solution is unlikely to happen as long as Ξ̂ is not zero or an additional penalty term on N̂ is added to
the cost function equation (12).

Figure 19. This figures illustrates the third type of global minimum solution to equation (12). Left: Even though the denoised
signal does not perfectly match the underlying Lorenz system, its overall behavior resembles it. Middle: The simulation result of
identified system shown in equation (29). Even though there’s model discrepancy between the identified system and true system,
the identified system still captures the shape of the Lorenz attractor. The identified system is simulated using initial condition
x0 = [5,5,25], with dt= 0.01 and T= 25. Right: The distribution of identified noise and true noise. It can be seen that the
identified noise has larger magnitude than the ground truth, which suggests adding a noise magnitude regularization term can
help us converge to the true system.

a ‘sister system’ that has similar behavior to the original Lorenz system, with final cost value 0.001679. In
this case, the identified system is:

ẋ=−1.26x+ 7.87y− 0.243xz,

ẏ= 24.33x− 0.951xz+ 0.787y,

ż= 0.932xy− 2.58z,

(29)

with EN = 1.15, Ef = 0.0186, and EF = 0.436. This example suggests that it is possible to find out a Ξ̂ ̸=Ξ
and N̂ ̸= N, such that the final cost value is still close to zero, which suggests the optimization problem in
equation (12) without regularization term can theoretically have infinite global optimum. In other words,
for any constant value of Ξ̂, there exist a unique N̂ that makes the cost function in equation (12) equals to
zero.

In practice, we find out the third global optimum tends to show up when the noise-signal ratio is high
(usually above 40%). Moreover, in this case, the identified noise tends to have a slightly larger magnitude
than the true noise, as figure 19 illustrates. Thus, when dealing with highly corrupted measurement data, it
is recommended the reader add a L2 regularization term on the estimated noise magnitude to avoid the this
type of global optimum. When the noise-signal ratio is low (under 30% for all the example we used in this
paper), we find out this type of solution does not show up as long as the correct thresholding parameter is
picked, we believe this is due to the initial guess of Ξ̂ and N̂ is good enough to avoid this type of solution.

23

Mach. Learn.: Sci. Technol. 3 (2022) 015031 K Kaheman et al

Table 4. This table shows the denosing performance difference of using equation (12) and using equation (12) without derivative term
ed on Lorenz example with 40% of noise.

Terms Cost function: equation (12) Cost function: equation (12) without ed

Ef 0.00259 0.0011
EN 0.271 0.1975
EF 0.003 0.00136
Ep 0.01259 0.0158
ẋ −9.7206x+ 9.796y −9.673x+ 9.759y
ẏ 27.828x− 1.032y− 0.988xz 28.275x− 1.089y− 1.003xz
ż −2.729z+ 1.059xy −2.678z+ 1.033xy

To summarize, the optimization problem shown in equation (12) has multiple global optimum solution.
When the noise-signal ratio is low and the initial guess of Ξ̂ and N̂ is good enough and proper thresholding
parameter λ is picked, the final solution will converge to the true dynamics and noise. Moreover, it is
recommended to add noise regularization term when the added noise is too high. The effect of additional
regularization term on the performance of approach, and the proper way to tune this regularization term is
beyond the scope of this paper.

Appendix L. Calculation of the derivative term ed

The derivative error shown in equations (6) and (12) are calculated using five-point stencil approach
throughout the paper. Given an estimated state vector X̂ ∈ Rm×n, the derivative is calculated as:

˙̂X=
−X̂[5 : end, :] + 8X̂[4 : end− 1, :]− 8X̂[2 : end− 3, :] + X̂[1 : end− 4, :]

12dt
, (30)

where [i : j, :] represent the matrix slicing. The resulting derivative estimation term will have shape
˙̂X ∈ Rm−4×n. Thus to calculate the derivative error ed, we discard the first and last two rows of matrix X̂ so

that the dimension of ˙̂Xmatch withΘ(X̂[3 : end− 2, :])Ξ ∈ Rm−4×n.
It is also worth noting that the simulation error es already constraints the derivative error ed. In other

words, when minimizing the simulation error es, the derivative error is also minimized, since es utilize the
right-hand side of system dynamicsΘ(X̂)Ξ. Thus, we find out dropping the derivative error term ed from
the cost function equation (12) does not affect the overall performance of the approach. To illustrate this, the
Lorenz attractor is simulated using dt= 0.01,T= 25 with initial condition x0 = [5,5,25]. Then 40% of noise
is added to the simulation data to generate noisy measurement. Next, ADAM optimizer is used with
following parameters to optimize the cost function shown in equation (12). The parameters used is q= 1,
Ntrain = 5000, Nloop = 8, learning rate is set to 0.001, and the order of library is 2. Next, the same parameters
is used to minimize the cost function without the derivative error term. The final result yield by using two
cost function can be seen in table 4. Note that EF is calculate by simulating the identified system using initial
condition x0 = [5,5,25], dt= 0.01 and T= 3. As table 4 suggests, dropping the ed term from the cost
function equation (12) does not change the final result too much. Moreover, the Ef, EN, and EF error got
slight improvement. We believe this happens since dropping the ed term from the cost function avoids the
numeric derivative approximation error.

ORCID iDs

Kadierdan Kaheman https://orcid.org/0000-0003-2279-2793
Steven L Brunton https://orcid.org/0000-0002-6565-5118
J Nathan Kutz  https://orcid.org/0000-0002-6004-2275

References

[1] Nelles O 2013 Nonlinear System Identification: From Classical Approaches to Neural Networks and Fuzzy Models (Berlin, NY:
Springer)

[2] Ljung L 2010 Perspectives on system identification Annu. Rev. Control 34 1–12
[3] Kutz J N, Brunton S L, Brunton B W and Proctor J L 2016 Dynamic Mode Decomposition: Data-Driven Modeling of Complex

Systems (Philadelphia, PA: SIAM)
[4] Akaike H 1969 Fitting autoregressive models for prediction Ann. Inst. Stat. Math. 21 243–7
[5] Billings S A 2013 Nonlinear System Identification: Narmax Methods in the Time, Frequency and Spatio-Temporal Domains (New

York: Wiley)

24

https://orcid.org/0000-0003-2279-2793
https://orcid.org/0000-0003-2279-2793
https://orcid.org/0000-0002-6565-5118
https://orcid.org/0000-0002-6565-5118
https://orcid.org/0000-0002-6004-2275
https://orcid.org/0000-0002-6004-2275
https://doi.org/10.1016/j.arcontrol.2009.12.001
https://doi.org/10.1016/j.arcontrol.2009.12.001
https://doi.org/10.1007/BF02532251
https://doi.org/10.1007/BF02532251

Mach. Learn.: Sci. Technol. 3 (2022) 015031 K Kaheman et al

[6] Brunton S L and Kutz J N 2019 Data-Driven Science and Engineering: Machine Learning, Dynamical Systems and Control
(Cambridge, MA: Cambridge University Press)

[7] Brunton S L, Proctor J L and Kutz J N 2016 Discovering governing equations from data by sparse identification of nonlinear
dynamical systems Proc. Natl Acad. Sci. 113 3932–7

[8] Rudy S H, Brunton S L, Proctor J L and Kutz J N 2017 Data-driven discovery of partial differential equations Sci. Adv. 3 e1602614
[9] Schaeffer H 2017 Learning partial differential equations via data discovery and sparse optimization Proc. R. Soc. A 473 20160446
[10] Kaheman K, Kutz J N and Brunton S L 2020 Sindy-pi: a robust algorithm for parallel implicit sparse identification of nonlinear

dynamics Proc. R. Soc. A 476 20200279
[11] Schmid P J 2010 Dynamic mode decomposition of numerical and experimental data J. Fluid Mech. 656 5–28
[12] Klus S, Nüske F, Koltai P, Wu H, Kevrekidis I, Schütte C and Noé F 2018 Data-driven model reduction and transfer operator

approximation J. Nonlinear Sci. 28 985–1010
[13] Yang L, Zhang D and Karniadakis G E 2018 Physics-informed generative adversarial networks for stochastic differential equations

(arXiv:1811.02033)
[14] Wehmeyer C and Noé F 2018 Time-lagged autoencoders: deep learning of slow collective variables for molecular kinetics J. Chem.

Phys. 148 1–9
[15] Mardt A, Pasquali L, Wu H and Noé F 2018 VAMPnets: deep learning of molecular kinetics Nat. Commun. 9 5
[16] Vlachas P R, Byeon W, Wan Z Y, Sapsis T P and Koumoutsakos P 2018 Data-driven forecasting of high-dimensional chaotic

systems with long short-term memory networks Proc. R. Soc. A 474 20170844
[17] Lu L, Meng X, Mao Z and Karniadakis G E 2019 DeepXDE: a deep learning library for solving differential equations

(arXiv:1907.04502)
[18] Raissi M, Perdikaris P and Karniadakis G 2019 Physics-informed neural networks: a deep learning framework for solving forward

and inverse problems involving nonlinear partial differential equations J. Comput. Phys. 378 686–707
[19] Champion K, Lusch B, Kutz J N and Brunton S L 2019 Data-driven discovery of coordinates and governing equations Proc. Natl

Acad. Sci. 116 22445–51
[20] Bongard J and Lipson H 2007 Automated reverse engineering of nonlinear dynamical systems Proc. Natl Acad. Sci. 104 9943–8
[21] Schmidt M and Lipson H 2009 Distilling free-form natural laws from experimental data Science 324 81–5
[22] Budišíc M, Mohr R and Mezíc I 2012 Applied Koopmanism Chaos 22 047510
[23] Mezic I 2013 Analysis of fluid flows via spectral properties of the Koopman operator Annu. Rev. Fluid Mech. 45 357–78
[24] Williams M O, Kevrekidis I G and Rowley C W 2015 A data-driven approximation of the Koopman operator: extending dynamic

mode decomposition J. Nonlinear Sci. 6 1307–46
[25] Pathak J, Hunt B, Girvan M, Lu Z and Ott E 2018 Model-free prediction of large spatiotemporally chaotic systems from data: a

reservoir computing approach Phys. Rev. Lett. 120 024102
[26] Raissi M and Karniadakis G E 2017 Machine learning of linear differential equations using Gaussian processes (arXiv:1701.02440)
[27] Raissi M and Karniadakis G E 2018 Hidden physics models: machine learning of nonlinear partial differential equations J. Comput.

Phys. 357 125–41
[28] Giannakis D and Majda A J 2012 Nonlinear Laplacian spectral analysis for time series with intermittency and low-frequency

variability Proc. Natl Acad. Sci. 109 2222–7
[29] Yair O, Talmon R, Coifman R R and Kevrekidis I G 2017 Reconstruction of normal forms by learning informed observation

geometries from data Proc. Natl Acad. Sci. 114 201620045
[30] Daniels B C and Nemenman I 2015 Automated adaptive inference of phenomenological dynamical models Nat. Commun. 6 8133
[31] Yao C and Bollt E M 2007 Modeling and nonlinear parameter estimation with Kronecker product representation for coupled

oscillators and spatiotemporal systems Physica D 227 78–99
[32] Rudy S H, Kutz J N and Brunton S L 2019 Deep learning of dynamics and signal-noise decomposition with time-stepping

constraints J. Comput. Phys. 396 483–506
[33] Baydin A G, Pearlmutter B A, Radul A A and Siskind J M 2017 Automatic differentiation in machine learning: a survey J. Mach.

Learn. Res. 18 5595–637
[34] Su W et al 2017 False discoveries occur early on the Lasso path Ann. Stat. 45 2133–50
[35] Tibshirani R 1996 Regression shrinkage and selection via the Lasso J. R. Statist. Soc. B 58 267–88
[36] Zhang L and Schaeffer H 2019 On the convergence of the SINDy algorithmMultiscale Model. Simul. 17 948–72
[37] Champion K, Zheng P A, Brunton S and Nathan Kutz J 2019 A unified sparse optimization framework to learn parsimonious

physics-informed models from data (arxiv:1906.10612v1)
[38] Zheng P, Askham T, Brunton S L, Kutz J N and Aravkin A Y 2018 A unified framework for sparse relaxed regularized regression:

SR3 IEEE Access 7 1404–23
[39] Sorokina M, Sygletos S and Turitsyn S 2016 Sparse identification for nonlinear optical communication systems: SINO method Opt.

Express 24 30433–43
[40] Loiseau J-C and Brunton S L 2018 Constrained sparse Galerkin regression J. Fluid Mech. 838 42–67
[41] DamM, Brøns M, Juul Rasmussen J, Naulin V and Hesthaven J S 2017 Sparse identification of a predator-prey system from

simulation data of a convection model Phys. Plasmas 24 022310
[42] Loiseau J-C, Noack B R and Brunton S L 2018 Sparse reduced-order modelling: sensor-based dynamics to full-state estimation J.

Fluid Mech. 844 459–90
[43] Hoffmann M, Fröhner C and Noé F 2019 Reactive SINDy: discovering governing reactions from concentration data J. Chem. Phys.

150 025101
[44] Loiseau J-C 2020 Data-driven modeling of the chaotic thermal convection in an annular thermosyphon Theor. Computat. Fluid

Dyn. 34 1–27
[45] El Sayed M Y, Semaan R and Radespiel R 2018 Sparse modeling of the lift gains of a high-lift configuration with periodic coanda

blowing 2018 AIAA Aerospace Sciences Meeting p 1054
[46] Narasingam A and Kwon J S-I 2018 Data-driven identification of interpretable reduced-order models using sparse regression

Comput. Chem. Eng. 119 101–11
[47] de Silva B, Higdon D M, Brunton S L and Kutz J N 2019 Discovery of physics from data: universal laws and discrepancy models

(arXiv:1906.07906)
[48] Kaheman K, Kaiser E, Strom B, Kutz J N and Brunton S L 2019 Learning discrepancy models from experimental data Conf.

Decision and Control
[49] Thaler S, Paehler L and Adams N A 2019 Sparse identification of truncation errors J. Comput. Phys. 397 108851

25

https://doi.org/10.1073/pnas.1517384113
https://doi.org/10.1073/pnas.1517384113
https://doi.org/10.1126/sciadv.1602614
https://doi.org/10.1126/sciadv.1602614
https://doi.org/10.1098/rspa.2016.0446
https://doi.org/10.1098/rspa.2016.0446
https://doi.org/10.1098/rspa.2020.0279
https://doi.org/10.1098/rspa.2020.0279
https://doi.org/10.1017/S0022112010001217
https://doi.org/10.1017/S0022112010001217
https://doi.org/10.1007/s00332-017-9437-7
https://doi.org/10.1007/s00332-017-9437-7
https://arxiv.org/abs/1811.02033
https://doi.org/10.1063/1.5011399
https://doi.org/10.1063/1.5011399
https://doi.org/10.1038/s41467-017-02388-1
https://doi.org/10.1038/s41467-017-02388-1
https://doi.org/10.1098/rspa.2017.0844
https://doi.org/10.1098/rspa.2017.0844
https://arxiv.org/abs/1907.04502
https://doi.org/10.1016/j.jcp.2018.10.045
https://doi.org/10.1016/j.jcp.2018.10.045
https://doi.org/10.1073/pnas.1906995116
https://doi.org/10.1073/pnas.1906995116
https://doi.org/10.1073/pnas.0609476104
https://doi.org/10.1073/pnas.0609476104
https://doi.org/10.1126/science.1165893
https://doi.org/10.1126/science.1165893
https://doi.org/10.1063/1.4772195
https://doi.org/10.1063/1.4772195
https://doi.org/10.1146/annurev-fluid-011212-140652
https://doi.org/10.1146/annurev-fluid-011212-140652
https://doi.org/10.1007/s00332-015-9258-5
https://doi.org/10.1007/s00332-015-9258-5
https://doi.org/10.1103/PhysRevLett.120.024102
https://doi.org/10.1103/PhysRevLett.120.024102
https://arxiv.org/abs/1701.02440
https://doi.org/10.1016/j.jcp.2017.11.039
https://doi.org/10.1016/j.jcp.2017.11.039
https://doi.org/10.1073/pnas.1118984109
https://doi.org/10.1073/pnas.1118984109
https://doi.org/10.1073/pnas.1620045114
https://doi.org/10.1073/pnas.1620045114
https://doi.org/10.1038/ncomms9133
https://doi.org/10.1038/ncomms9133
https://doi.org/10.1016/j.physd.2006.12.006
https://doi.org/10.1016/j.physd.2006.12.006
https://doi.org/10.1016/j.jcp.2019.06.056
https://doi.org/10.1016/j.jcp.2019.06.056
https://doi.org/10.5555/3122009.3242010
https://doi.org/10.5555/3122009.3242010
https://doi.org/10.1214/16-AOS1521
https://doi.org/10.1214/16-AOS1521
https://doi.org/10.1111/j.2517-6161.1996.tb02080.x
https://doi.org/10.1111/j.2517-6161.1996.tb02080.x
https://doi.org/10.1137/18M1189828
https://doi.org/10.1137/18M1189828
https://arxiv.org/abs/1906.10612v1%20
https://doi.org/10.1109/ACCESS.2018.2886528
https://doi.org/10.1109/ACCESS.2018.2886528
https://doi.org/10.1364/OE.24.030433
https://doi.org/10.1364/OE.24.030433
https://doi.org/10.1017/jfm.2017.823
https://doi.org/10.1017/jfm.2017.823
https://doi.org/10.1063/1.4977057
https://doi.org/10.1063/1.4977057
https://doi.org/10.1017/jfm.2018.147
https://doi.org/10.1017/jfm.2018.147
https://doi.org/10.1063/1.5066099
https://doi.org/10.1063/1.5066099
https://doi.org/10.1007/s00162-020-00536-w
https://doi.org/10.1007/s00162-020-00536-w
https://doi.org/10.1016/j.compchemeng.2018.08.010
https://doi.org/10.1016/j.compchemeng.2018.08.010
https://arxiv.org/abs/1906.07906
https://doi.org/10.1016/j.jcp.2019.07.049
https://doi.org/10.1016/j.jcp.2019.07.049

Mach. Learn.: Sci. Technol. 3 (2022) 015031 K Kaheman et al

[50] Lai Z and Nagarajaiah S 2019 Sparse structural system identification method for nonlinear dynamic systems with
hysteresis/inelastic behaviorMech. Syst. Signal Process. 117 813–42

[51] Deng N, Noack B R, Morzyński M and Pastur L R 2020 Low-order model for successive bifurcations of the fluidic pinball J. Fluid
Mech. 884 A37

[52] Schmelzer M, Dwight R P and Cinnella P 2020 Discovery of algebraic Reynolds-stress models using sparse symbolic regression
Flow Turbul. Combust. 104 579–603

[53] Pan S, Arnold-Medabalimi N and Duraisamy K 2020 Sparsity-promoting algorithms for the discovery of informative Koopman
invariant subspaces (arXiv:2002.10637)

[54] Beetham S and Capecelatro J 2020 Formulating turbulence closures using sparse regression with embedded form invariance
(arXiv:2003.12884)

[55] Brunton S L, Proctor J L and Kutz J N 2016 Sparse identification of nonlinear dynamics with control (SINDYc) IFAC-PapersOnLine
49 710–15

[56] Kaiser E, Kutz J N and Brunton S L 2018 Sparse identification of nonlinear dynamics for model predictive control in the low-data
limit Proc. R. Soc. A 474 20180335

[57] Mangan N M, Brunton S L, Proctor J L and Kutz J N 2016 Inferring biological networks by sparse identification of nonlinear
dynamics IEEE Trans. Mol. Biol. Multi-Scale Commun. 2 52–63

[58] Zhang S and Lin G 2018 Robust data-driven discovery of governing physical laws with error bars Proc. R. Soc. A 474 20180305
[59] Messenger D A and Bortz D M 2020 Weak SINDy for partial differential equations (arXiv:2007.02848)
[60] Rudy S, Alla A, Brunton S L and Kutz J N 2019 Data-driven identification of parametric partial differential equations SIAM J. Appl.

Dyn. Sys. 18 643–60
[61] Champion K P, Brunton S L and Kutz J N 2019 Discovery of nonlinear multiscale systems: sampling strategies and embeddings

SIAM J. Appl. Dyn. Syst. 18 312–33
[62] Boninsegna L, Nüske F and Clementi C 2018 Sparse learning of stochastic dynamical equations J. Chem. Phys. 148 241723
[63] Mangan N M, Kutz J N, Brunton S L and Proctor J L 2017 Model selection for dynamical systems via sparse regression and

information criteria Proc. R. Soc. A 473 20170009
[64] Tran G and Ward R 2017 Exact recovery of chaotic systems from highly corrupted dataMultiscale Model. Simul. 15 1108–29
[65] Schaeffer H and McCalla S G 2017 Sparse model selection via integral terms Phys. Rev. E 96 023302
[66] Schaeffer H, Tran G and Ward R 2018 Extracting sparse high-dimensional dynamics from limited data SIAM J. Appl. Math.

78 3279–95
[67] Wu K and Xiu D 2019 Numerical aspects for approximating governing equations using data J. Comput. Phys. 384 200–21
[68] Mangan N M, Askham T, Brunton S L, Kutz J N and Proctor J L 2019 Model selection for hybrid dynamical systems via sparse

regression Proc. R. Soc. A 475 20180534
[69] Gelß P, Klus S, Eisert J and Schütte C 2019 Multidimensional approximation of nonlinear dynamical systems J. Comput. Nonlinear

Dynam. 14 061006
[70] Goeßmann A, Götte M, Roth I, Sweke R, Kutyniok G and Eisert J 2020 Tensor network approaches for learning non-linear

dynamical laws (arXiv:2002.12388)
[71] Reinbold P A, Gurevich D R and Grigoriev R O 2020 Using noisy or incomplete data to discover models of spatiotemporal

dynamics Phys. Rev. E 101 010203
[72] Messenger D A and Bortz D M 2020 Weak SINDy: Galerkin-based data-driven model selection (arXiv:2005.04339)
[73] de Silva B M, Champion K, Quade M, Loiseau J-C, Kutz J N and Brunton S L 2020 PySINDy: a Python package for the sparse

identification of nonlinear dynamics from data (arXiv:2004.08424)
[74] van Breugel F, Kutz J N and Brunton B 2020 Numerical differentiation of noisy data: A unifying multi-objective optimization

framework (arXiv:2009.01911)
[75] Kutz J N 2013 Data-Driven Modeling & Scientific Computation: Methods for Complex Systems & Big Data (Oxford: Oxford

University Press)
[76] Abadi M et al 2016 Tensorflow: a system for large-scale machine learning 12th USENIX Symposium on Operating Systems Design

and Implementation (OSDI 16) pp 265–83
[77] Rackauckas C and Nie Q 2017 Differential Equations.jl—a performant and feature-rich ecosystem for solving differential equations

in Julia J. Open Res. Softw. 5 15
[78] Van Merriënboer B, Breuleux O, Bergeron A and Lamblin P 2018 Automatic differentiation in ML: where we are and where we

should be going Advances in Neural Information Processing Systems pp 8757–67
[79] Chen R T, Rubanova Y, Bettencourt J and Duvenaud D K 2018 Neural ordinary differential equations Advances in Neural

Information Processing Systems pp 6571–83
[80] Rudy S H, Brunton S L and Kutz J N 2019 Smoothing and parameter estimation by soft-adherence to governing equations J.

Comput. Phys. 398 108860
[81] Both G-J, Choudhury S, Sens P and Kusters R 2019 DeepMoD: Deep learning for model discovery in noisy data (arXiv:1904.09406)
[82] Rackauckas C, Ma Y, Martensen J, Warner C, Zubov K, Supekar R, Skinner D and Ramadhan A 2020 Universal differential

equations for scientific machine learning (arXiv:2001.04385)
[83] Lange H, Brunton S L and Kutz N 2020 From Fourier to Koopman: Spectral methods for long-term time series prediction

(arXiv:2004.00574)
[84] Boninsegna L, Nüske F and Clementi C 2018 Sparse learning of stochastic dynamical equations J. Chem. Phys. 148 241723
[85] Pan W, Yuan Y, Gonçalves J and Stan G 2016 A sparse Bayesian approach to the identification of nonlinear state-space systems IEEE

Trans. Autom. Control 61 182–7
[86] Gurevich D R, Reinbold P A K and Grigoriev R O 2019 Robust and optimal sparse regression for nonlinear pde models Chaos

29 103113
[87] Zhang S and Lin G 2019 Robust data-driven discovery of governing physical laws using a new subsampling-based sparse Bayesian

method to tackle four challenges (large noise, outliers, data integration, and extrapolation) (arXiv:1907.07788)
[88] Innes M 2018 Flux: elegant machine learning with Julia J. Open Source Softw. 3 602
[89] Schoenholz S S, Cubuk E D and Jax M 2018 End-to-end differentiable, hardware accelerated, molecular dynamics in pure python (

arXiv:1912.04232)
[90] Goodrich C P, King E M, Schoenholz S S, Cubuk E D and Brenner M P 2021 Designing self-assembling kinetics with differentiable

statistical physics models Proc. Natl Acad. Sci. 118 e2024083118

26

https://doi.org/10.1016/j.ymssp.2018.08.033
https://doi.org/10.1016/j.ymssp.2018.08.033
https://doi.org/10.1017/jfm.2019.959
https://doi.org/10.1017/jfm.2019.959
https://doi.org/10.1007/s10494-019-00089-x
https://doi.org/10.1007/s10494-019-00089-x
https://arxiv.org/abs/2002.10637
https://arxiv.org/abs/2003.12884
https://doi.org/10.1016/j.ifacol.2016.10.249
https://doi.org/10.1016/j.ifacol.2016.10.249
https://doi.org/10.1098/rspa.2018.0335
https://doi.org/10.1098/rspa.2018.0335
https://doi.org/10.1109/TMBMC.2016.2633265
https://doi.org/10.1109/TMBMC.2016.2633265
https://doi.org/10.1098/rspa.2018.0305
https://doi.org/10.1098/rspa.2018.0305
https://arxiv.org/abs/2007.02848
https://doi.org/10.1137/18M1191944
https://doi.org/10.1137/18M1191944
https://doi.org/10.1137/18M1188227
https://doi.org/10.1137/18M1188227
https://doi.org/10.1063/1.5018409
https://doi.org/10.1063/1.5018409
https://doi.org/10.1098/rspa.2017.0009
https://doi.org/10.1098/rspa.2017.0009
https://doi.org/10.1137/16M1086637
https://doi.org/10.1137/16M1086637
https://doi.org/10.1103/PhysRevE.96.023302
https://doi.org/10.1103/PhysRevE.96.023302
https://doi.org/10.1137/18M116798X
https://doi.org/10.1137/18M116798X
https://doi.org/10.1016/j.jcp.2019.01.030
https://doi.org/10.1016/j.jcp.2019.01.030
https://doi.org/10.1098/rspa.2018.0534
https://doi.org/10.1098/rspa.2018.0534
https://doi.org/10.1115/1.4043148
https://doi.org/10.1115/1.4043148
https://arxiv.org/abs/2002.12388
https://doi.org/10.1103/PhysRevE.101.010203
https://doi.org/10.1103/PhysRevE.101.010203
https://arxiv.org/abs/2005.04339
https://arxiv.org/abs/2004.08424
https://arxiv.org/abs/2009.01911
https://doi.org/10.5334/jors.151
https://doi.org/10.5334/jors.151
https://doi.org/10.1016/j.jcp.2019.108860
https://doi.org/10.1016/j.jcp.2019.108860
https://arxiv.org/abs/1904.09406
https://arxiv.org/abs/2001.04385
https://arxiv.org/abs/2004.00574
https://doi.org/10.1063/1.5018409
https://doi.org/10.1063/1.5018409
https://doi.org/10.1109/TAC.2015.2426291
https://doi.org/10.1109/TAC.2015.2426291
https://doi.org/10.1063/1.5120861
https://doi.org/10.1063/1.5120861
https://arxiv.org/abs/1907.07788
https://doi.org/10.21105/joss.00602
https://doi.org/10.21105/joss.00602
https://arxiv.org/abs/1912.04232
https://doi.org/10.1073/pnas.2024083118
https://doi.org/10.1073/pnas.2024083118

Mach. Learn.: Sci. Technol. 3 (2022) 015031 K Kaheman et al

[91] Kingma D P and Ba J 2014 Adam: A method for stochastic optimization (arXiv:1412.6980)
[92] Vulpiani A, Cecconi F and Cencini M 2009 Chaos: From Simple Models to Complex Systems vol 17 (Singapore: World Scientific)
[93] Cokelaer T, Brian, Stringari C E Broda E and Pruesse E 2020 cokelaer/fitter: v1.2.3 synchronised on pypi (available at:

https://doi.org/10.5281/zenodo.3995055)
[94] Kaheman K, Brunton S L and Kutz J N 2020 Dynamicslab/modified-SINDy: V1.0.0 code for modified-SINDy algorithm Zenodo

Version V1.0.0 (available at: https://doi.org/10.5281/zenodo.4060354)

27

https://arxiv.org/abs/1412.6980
https://doi.org/10.5281/zenodo.3995055
https://doi.org/10.5281/zenodo.4060354

	Automatic differentiation to simultaneously identify nonlinear dynamics and extract noise probability distributions from data
	1. Introduction
	2. Methods
	2.1. Sparse identification of nonlinear dynamics
	2.2. Simultaneously denoising and learning system model

	3. Performance comparison with neural network denoising approach
	3.1. Performance criteria
	3.2. Robustness to noise
	3.3. Robustness to data length

	4. Results
	4.1. Van der Pol oscillator
	4.2. Rössler attractor
	4.3. Lorenz 96 model
	4.4. Identification of noise distributions
	4.5. Discrepancy modeling

	5. Conclusion and future work
	Acknowledgments
	Appendix A. Algorithm for simultaneously denoising and learning system model
	Appendix B. Effect of thresholding parameter
	Appendix C. Effect of prediction step q
	Appendix D. Effect of optimization iteration Nloop
	Appendix E. Noise robustness comparison with SINDy
	Appendix F. Noise robustness comparison with Weak-SINDy
	Appendix G. Parameters used in figure F00088
	Appendix H. Tips on learning non-zero mean noise
	Appendix I. Identifying noise distribution type
	Appendix J. Caveats of the approach
	Appendix K. Global minimum of cost function equation (M001212)
	Appendix L. Calculation of the derivative term ed
	References

