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Abstract 
This paper investigates experimental design (DoE) for the calibration of the triaxial accelerome- 
ters embedded in a wearable micro Inertial Measurement Unit (μ-IMU). Firstly, a new lineariza- 
tion strategy is proposed for the accelerometer model associated with the so-called autocalibra- 
tion scheme. Then, an effective Icosahedron design is developed, which can achieve both D-opti- 
mality and G-optimality for linearized accelerometer model in ideal experimental settings. How- 
ever, due to various technical limitations, it is often infeasible for the users of wearable sensors to 
fully implement the proposed experimental scheme. To assess the efficiency of each individual 
experiment, an index is given in terms of desired experimental characteristic. The proposed expe- 
rimental scheme has been applied for the autocalibration of a newly developed μ-IMU. 
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1. Introduction 
Wearable health monitoring system is one of the most promising technologies to provide effective solutions to 
health monitoring for aging populations. Various wearable sensors equipped with artificial intelligence, e.g., 
neural networks, fuzzy logical, genetic algorithm, particle swarm optimization, and clustering, have already 
been utilized for specific health monitoring tasks [1]. However, in general, the accuracy of the wearable sensors 
needs to be substantially enhanced in order to improve the reliability of wearable systems to meet medical de-
vice standards. 
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With the rapid development of Micro-Electro-Mechanical Systems (MEMS) technology, chip-based wearable 
sensors are becoming small, inexpensive, lightweight, and low energy-consuming, which stimulate their appli-
cations in the development of wearable systems in health monitoring [2], e.g., gait analysis and fall detection/ 
prediction [3]. However, due to their fabrication process, similar to most wearable sensors, MEMS sensors have 
large bias instability and output noise. Regular calibrations are therefore necessary to improve the accuracy of 
sensors’ measurements. However, due to the inaccessible of laboratory equipments, users of wearable health 
monitoring systems are normally unable to implement designed experiment sufficiently. 

Several recent papers [4]-[6] report that a new calibration method for MEMS triaxial accelerometer, recog-
nized as autocalibration, can be implemented in non-experimental condition. However, the quality, especially 
the assessment of each individual calibration, has not received the attention it deserves. To authors’ best know-
ledge, unlike traditional calibration method, there is no paper systemically discussing the issues of Experimental 
Design (DoE) yet. Most studies concentrate on the parameter estimation algorithms and its feasibility investiga-
tions. Few papers [7] [8] qualitatively described the selections of experimental observations. 

This paper aims to provide a systematic investigation of Experimental Design (DoE) for autocalibration me-
thod. A major focus of DoE is to optimally design suitable input signals to stimulate the system significantly so 
that the information about the system can be extracted from the experiments. For the identification of a static 
model of an inertial sensor, a well selected/designed set of experimental observations with desired properties, in 
terms of DoE, can significantly improve the accuracy of parameter estimation [9]. 

Classical accelerometer calibration, normally carried out in a well-controlled laboratory environment, can be 
formulated as a static linear parameter identification problem, for which DoE theory has been well established 
[9]-[13]. However, the models associated with the autocalibration are often nonlinear. This makes the linear 
DoE approaches, which are effective and theoretically rigorous in traditional accelerometer calibration, invalid 
for autocalibration. 

In this study, a new linearization method for autocalibration [4] is developed in order to utilize linear DoE for 
this new calibration method. A 12-observation Icosahedron design has been proposed for a linearized 9-para- 
meter model [6] to improve the accuracy of autocalibration. Two performance indices of optimal experimental 
design, D-optimality and G-optimality, are investigated based on the analysis of the information matrix of this 
Icosahedron design. Furthermore, a posterior type D-efficiency [11] is introduced to evaluate a specific experi-
ment when compared with the D-optimal value under ideal experimental conditions. 

The paper is structured as follows. The next section introduces the proposed linearization method for the 9- 
parameter model for autocalibration. In Section 3, an experimental design is proposed and the details of its in-
dices will be analysed. Section 4 shows experimental validation of the designed experiment and Section 5 con-
cludes the paper.  

2. New Linearization Method for Auto-Calibration Model 
A classical static linear second-order model for an accelerometer can be written as follows:  

3 3
2

0
1 1

,i i ij i j ii i
i i j i

y x x x xβ β β β ε
= < =

= + + + +∑ ∑∑ ∑                         (1) 

where 1 2 3,  ,  x x x  are the associated control or input variables (i.e., the input acceleration for each axis), 
( )i iiβ β  are the unknown constant coefficients (also referred to as parameters), and ε  represent the random 

errors in experimental measurements. 
Assume a set of N  experimental observations have been performed. Then, the matrix form of the experi-

ment can be expressed as follows [9]:  
,Y XB ε= +                                       (2) 

where pB R∈  is the vector of the unknown parameters, 1NY R ×∈  is the vector of measurements, matrix 
N pX R ×∈  is generated by the input signals, and 1NRε ×∈  is the vector of random errors. 

Assume that the random errors 1NRε ×∈  are zero mean, then the information matrix for B  in Equation (2) 
can be defined as TX X :  

( ) ( )T T

1
,

N

i i
i

X X f x f x
=

= ∑                                  (3) 
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where ( )T
if x  is the i-th row of matrix X [14]. For a specific N trials design Nξ , Equation (3) can be norma-

lized as:  

( )
T

,N
X XM

N
ξ =                                    (4) 

which is also known as moment matrix. If TX X  is full rank, the variance-covariance matrix of the least square 
(LS) estimator B̂  is:  

( ) ( ) 1T 2ˆvar .B X X σ
−

=                                  (5) 

The variance of ( )ŷ x  is of the form:  

( )( ) ( )( ) ( )
12 T Tˆvar .y x f x X X f xσ
−

=                            (6) 

In order to compare within different experimental designs, the scaled prediction variance is often defined as 
follows [14]:  

( ) ( ) ( ) ( )
( )( )T 1

2

ˆvar
, .N N

N y x
d x f x M f xξ ξ

σ
−= =                        (7) 

To apply DoE theory for the calibration of MEMS accelerometer, we define uncalibrated acceleration gener-  
ated from accelerometer output as 

T
x y zV v v v =   , which is generated from the measurement of accelero-

meters. We also define 
T

x y zO o o o =    as the offset of the accelerometer. The vector 
T

x y zA a a a =     

is the real acceleration component on each axis. 
A model describing the accelerometer can then be expressed in matrix form as below:  

,
x xx xy xz x x

y yx yy yz y y

z zx zy zz z z

a S S S v o
a S S S v o
a S S S v o

        
       = +       
              

                            (8) 

where S  is the scale factor matrix. The diagonal elements iiS  represent sensitivity of each direction and off- 
diagonal elements ijS  represent cross-axis sensitivity. Considering the symmetry constraint for the scale factor 
matrix S  (i.e., ij jiS S=  [6]). Therefore, the model in Equation (8) can be expressed in 9 independent para-
meters. 

The autocalibration method is based on the fact that the overall acceleration which is measured by triaxial ac-
celerometer should equal to the local gravity acceleration “1g” in static condition. The principle of autocalibra-
tion is:  

2 2 2 .x y zg a a a= + +                                      (9) 

By applying the method of autocalibration (see Equation (9)) for the 9-parameter model from Equation (8), 
we have:  

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

2 2 2 2

2

2

2

    

       

       

x y z

xx x x xy y y xz z z

xy x x yy y y yz z z

xz x x yz y y zz z z

g a a a

S V O S V O S V O

S V O S V O S V O

S V O S V O S V O

γ

γ

= + + +

 = ⋅ + + ⋅ + + ⋅ + 

 + ⋅ + + ⋅ + + ⋅ + 

 + ⋅ + + ⋅ + + ⋅ + + 

                  (10) 

where γ  is squared difference between accelerometer output and local gravity acceleration “1g”. Equation (10) 
can be further expressed as:  

( )
2

2

, , , ,
ij j j

i x y z j x y z
g S V O γ

= =

 
= ⋅ + + 

 
∑ ∑                            (11) 
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where ij jiS S= . 
Equation (11) cannot be written in the form of Equation (1) because of its nonlinearity with the parameters. 

To estimate the parameters, most existing studies use either nonlinear least square method [4] [11] or nonlinear 
recursive algorithms [7]. However, the key of these approaches is to locally linearize the nonlinear Equation (11) 
and recursively identify the unknown parameters. 

Inspired by these studies, this paper proposes a new linearization scheme to directly linearize Equation (11) 
and transform it in the form of Equation (1). From this, mature linear DoE theory can be directly applied to han-
dle experimental design and parameter estimation for the autocalibration scheme. In contrast with local lineari-
zation (e.g., Taylor expansion around the observation point), the main strategy of the proposed linearization 
method is based on re-combination of parameters. 

Firstly, this approach disregards the items in Equation (11) which have little impact on parameter estimation. 
Table 1 indicates that zero-g offset for each axis could be quite large in the worst case. If necessary, a pre-cali- 
bration is recommended to reduce initial zero-g offsets. After this procedure, the residual iO  in Equation (12) 
will be much smaller when comparing to local gravity acceleration “1g”. Let us compute and simplify xa :  

( ) ( )2 2 2 2

, ,
2 .x xi i i i i xi xj i j i j j i i j

i x y z i j
a S V V O O S S VV V O V O O O

= ≠

= + + + + + +∑ ∑∑               (12) 

From Table 1, we can see the cross-axis sensitivity ijS  is only 1%. Therefore, the terms in Equation (12) 
contain ( ) ( )xi j j iS O  and xi xjS S  which ,i j x≠  can be disregarded. We also disregard the items contained 2

iO  
and i jO O  as these items can be reduced significantly after pre-calibration. The remains of 2

xa  is:  
2 2 2 22 2 2 .x xx x xx x x xx xy x y xx xz x za S V S V O S S V V S S V V= + + +                        (13) 

We can apply the same simplification method for ya  and za  to simplify Equation (11) as follows:  

( )2 2 2 2

, , , ,
2 ,ii i ii i i ii jj ij i j

i x y z i x y z i j
g S V S V O S S S VV ε ε

= = ≠

= + + ± + + +∑ ∑ ∑∑                  (14) 

where ij jiS S= , ε  is zero mean Gaussian noise and ε  is non-zero random error representing the mean of 
the summation of the disregarded items. 

From Equation (14), let us define new parameters for the re-combined parameters as follows:  

( )
( )
( )

2
11

2
22

2
33

2
1

2
2

2
3

12

13

23

2

2

2

2

2

2

xx

yy

zz

xx x

yy y

zz z

xx yy xy

xx zz xz

yy zz yz

S

S

S

S O

S O

S O

S S S

S S S

S S S

β

β

β

β

β

β

β

β

β

=

=

=

=

=

=

+ =

+ =

+ =

                                  (15) 

Let us use 1,2,3V  to represent , ,i j kV , Equation (14) can be expressed as:  
2 2 2

1 1 2 2 3 3 11 1 22 2 33 3 12 1 2 13 1 3 23 2 3 .y V V V V V V V V V V V Vβ β β β β β β β β ε ε= + + + + + + + + + +          (16) 

This can be simplified as:  
3 3

2

1 1
.i i ii i ij i j

i i i j
y V V VVβ β β ε ε

= = <

= + + + +∑ ∑ ∑∑                            (17) 

Since iV  is input signal, the equation is now a linear equation about unknown parameters ( )i iiβ β . If we 
tentatively disregard ε  (in Section 4, we will show this unknown number can be recursively estimated), Equa-
tion (17) becomes a special case of Equation (1). 
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Table 1. Some significant specifications of ADXL345.                         

Parameter Min Typ Max Unit 

Cross-axis  1±   % 

Sensitivity (2 g range) 230 256 282 LBS/g 

0 g offset for X, Y −150 0 150 mg 

0 g offset for Z −250 0 250 mg 

Offset vs. temperature X, Y  0.4±   mg/˚C 

Offset vs. temperature Z  1.2±   mg/˚C 

 
Applying linear least square estimation (LSE) method for the simplified linear model, we have  

( ) 1T TB̂ X X X Y
−

=                                   (18) 

where  
2 2 2

1 2 3 1 2 3 1 2 1 3 2 3X V V V V V V V V V V V V =    

and  
T

1 2 3 11 22 33 12 13 23
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ .B β β β β β β β β β =    

Based on linear least square method, all new unknown parameters from Equation (16) can be estimated. Ac-
cording to the definition of Equation (15), the original 9 independent parameters iiS , ijS  and iO  can therefore 
be computed. However, as the nonzero random error ε  is disregarded, to obtain desired estimation accuracy, the 
LSE method should be recursively performed (see Section 4 for details). It should be noticed that iβ  and iiβ  
are not independent. For example, both 1β  and 11β  include common term 2

xxS  from the definition above.  

3. Proposed Experimental Plan and Optimality Indices 
3.1. Icosahedron Design 
In order to estimate 9 unknown parameters, a minimum number of 9 observations are necessary. To balance the 
cost and accuracy, we propose a 12-observation Icosahedron design, which is a space filling design aiming for 
the uniformly distribution of experimental observations on experimental domain. This experimental design is for 
the linearized 9-parameter model derived in Section 2. The idea of Icosahedron design is that all 12 observations 
uniformly distribute on the surface of sphere. 

Due to the constraint of the gravity based calibration, all the experimental observations will be situated un-
iformly on the surface of a sphere whose radius equals to local gravity “1g”. In another word, these 12 experi-
mental observations will construct an Icosahedron whose circumcircle has radius of “1g”. 

For Icosahedron design, if the radius of its circumcircle is “1g”, then all 12 observations can be pinpointed on 

rectangular coordinate system (see Table 2 for details). In Table 2, 2
5 5

a =
+

, 1 5

10 2 5
b +
=

+
. 

For each individual observation, the relationship of Table 2 can be well described by the following equations:  
• cos xA θ= , A  is tilt angle between x  and gravity; 
• cos yB θ= , B  is tilt angle between y  and gravity; 
• cos zC θ= , C  is tilt angle between z  and gravity. 

3.2. G-Optimality 
G-optimal design is seeking to minimize the maximum value of the scaled prediction variance in Equation (7) 
over the experimental region [14]:  

( ){ }min max , .Nx R
d x

ξ
ξ

∈
 
  

                                 (19) 
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Table 2. Three factors icosahedron design for triaxial accelerometer model and the tilt 
angle in three dimensional coordinate.                                                  

Observation  A  B  C 

1 0 ( )90  −a ( )148.3  −b ( )121.7  

2 0 ( )90  a ( )31.7  −b ( )121.7  

3 0 ( )90  −a ( )148.3  b ( )58.3  

4 0 ( )90  a ( )31.7  b ( )58.3  

5 −a ( )148.3  −b ( )121.7  0 ( )90  

6 a ( )31.7  −b ( )121.7  0 ( )90  

7 −a ( )148.3  b ( )58.3  0 ( )90  

8 a ( )31.7  b ( )58.3  0 ( )90  

9 −b ( )121.7  0 ( )90  −a ( )148.3  

10 b ( )58.3  0 ( )90  −a ( )148.3  

11 −b ( )121.7  0 ( )90  a ( )31.7  

12 b ( )58.3  0 ( )90  a ( )31.7  

 
G-optimal is an important measurement of performance which indicates satisfactory prediction of output 

throughout the design region. 
We propose the following theorem to show the proposed Icosahedron design is G-optimal.  
Theorem 1. The proposed Icosahedron design for the linearized 9-parameter accelerometer model  

3 3
2

1 1
i i ii i ij i j

i i i j
y x x x xβ β β ε

= = <

= + + +∑ ∑ ∑∑                            (20) 

is G-optimal.  
Proof. The variance equation of predicted ( )ŷ x  is:  

( )( ) ( )( ) ( )
12 T Tˆvar .y x f x X X f xσ
−

=                           (21) 

Recall scaled prediction variance from Equation (7):  

( ) ( ) ( ) ( )
( )( )T 1

2

ˆvar
, .N N

N y x
d x f x M f xξ ξ

σ
−= =  

A G-optimal design ξ  is one which can min-max ( ),d x ξ , i.e.,  

( )min max , .
x R

d x
ξ

ξ
∈

 
  

                                    (22) 

Regarding Equation (21), G-optimal is equivalent to  

( ) ( ) ( ){ }T 1min max Nx R
f x M f x

ξ
ξ−

∈
 
  

                             (23) 

where M  is the moment matrix TX X N . 
According to [9]  

( ){ }max , Nx R
d x pξ

∈
≥                                     (24) 

where p  is the number of parameters.  
That is, for a specific experimental design, if  

( ){ }max , Nx R
d x pξ

∈
=                                     (25) 
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then this experimental design is G-optimal design [9]. 
Consider the Icosahedron design proposed above for 9-parameter model:  

3 3
2

1 1
.i i ii i ij i j

i i i j
y x x x xβ β β ε

= = <

= + + +∑ ∑ ∑∑   

Recall Icosahedron design, matrix X  in Equation (21) is:  
2 2 2

1 2 3 1 2 3 1 2 1 3 2 3

2 2

2 2

2 2

2 2

2 2

2 2

2 2

2 2

2 2

2

                                          

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

0 0 0 0
0 0

x x x x x x x x x x x x

a b a b ab
a b a b ab
a b a b ab

a b a b ab
a b a b ab

a b a b ab
X

a b a b ab
a b a b ab
b a b a ab

b a b

− −
− −

− −

− −
− −

=
− −

− −
− 2

2 2

2 2

.

0 0
0 0 0 0
0 0 0 0

a ab
b a b a ab

b a b a ab

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 −
 
− − 
 
 

 

Substituting the value of 2
5 5

a =
+

 and 1 5

10 2 5
b +
=

+
 into Icosahedron design, as a result, we can 

compute the inverse of the moment matrix ( )1
NM ξ− :  

( )1

3 0 0 0 0 0 0 0 0
0 3 0 0 0 0 0 0 0
0 0 3 0 0 0 0 0 0
0 0 0 6 1.5 1.5 0 0 0

.0 0 0 1.5 6 1.5 0 0 0
0 0 0 1.5 1.5 6 0 0 0
0 0 0 0 0 0 15 0 0
0 0 0 0 0 0 0 15 0
0 0 0 0 0 0 0 0 15

NM ξ−

 
 
 
 
 

− − 
 = − −
 

− − 
 
 
 
 
 

 

Considering that  

( ) 2 2 2
1 2 3 1 2 3 1 2 1 3 2 3 ,

T
f x x x x x x x x x x x x x =    

we have  

( ) ( ) ( ) ( )

( ) ( )

T 1

22 2 2 2 2 2
1 2 3 1 2 3

,

             3 6 .

N Nd x f x M f x

x x x x x x

ξ ξ−=

= + + + + +
                       (26) 

Under the constrain 2 2 2
1 2 3 1x x x+ + = , it is easy to see:  

( ){ }max , 9.Nx R
d x ξ

∈
=  

According to the theorem of G-optimal in [4], this 12-observation Icosahedron design for the linearized 9- 
parameter model is G-optimal.                                                                □ 
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3.3. D-Optimality 
Another desired design characteristic of experimental design is D-optimality. The criterion of D-optimality is 
maximizing the determinant of the information matrix for continuous design or moment matrix for exact design 
[14]:  

( )( )max det ,D M
ξ

ξ=                                 (27) 

which leads to minimize the size of the confidence ellipsoid for the estimator B̂  in Equation (5). 
Kiefer and Wolfowitz [15] [16] developed the well-known Equivalence Theorem (KWT theorem), which 

provides a practical way to check if a design is D-optimal. This theorem shows that for continuous designs, D- 
and G-optimal designs are equivalent under some standard assumptions [15] [16]. 

Based on KWT theorem, we show the proposed Icosahedron design is also D-optimal.  
Theorem 2. The proposed Icosahedron design is D-optimal for the linearized 9-parameter model  

3 3
2

1 1
.i i ii i ij i j

i i i j
y x x x xβ β β ε

= = <

= + + +∑ ∑ ∑∑   

Proof. Let us consider a continuous experimental design ξ  with finite observation N. From Equation (21), if 
( )max ,

x R
d x pξ

∈
=  , then this experiment is continuous G-optimal design. For our Icosahedron design, we proved 

that ( )max , 9Nx R
d x ξ

∈
=  in Theorem 1. 

To convert exact design Nξ  to continuous design ξ , let us consider that each observation in the experi-
mental design shares the same weight. In this case, the value of ( )max ,

x R
d x ξ

∈
 for our Icosahedron design will 

also be 9 which means Icosahedron design is continuous G-optimal design for the linearized 9-parameter model. 
Based on KWT Equivalence Theorem [14]-[16], since the Icosahedron design can be considered as conti-

nuous G-optimal design, it is also continuous D-optimal design.                                      □ 

4. Experimental Results and Discussion 
The µ -IMU that we use to test the Icosahedron design contains a triaxial accelerometer ADXL345 manufac-
tured by Analog Device. The main characteristics of ADXL345 are listed in Table 1. 

Based on the described experimental design in Section 3, we tried to implement the Icosahedron design. It is 
not supervising that the proposed plan cannot be fully implemented by using the “non-professional” calibration 
devices. To access the quality of a specific experiment, we adopt the following index, D-efficiency [10], to eva-
luate the quality of a particular experiment  

( ) ( )( )1eff ,
P

N ND M Mξ ξ ∗=                              (28) 

where Nξ
∗  and Nξ  stand for the designed optimal experiment and a specific experiment respectively. 

To evaluate the efficiency of a specific experiment, ideally, we need the exact input value of each observation 
for a specific design Nξ . In a traditional accelerometer calibration experiment, the input (acceleration) to the 
accelerometer can be accurately measured and its value are adjustable. Therefore, for traditional accelerometer 
calibration, the D-efficiency can be determined even before the experiments. 

However, for auto-calibration, the input value on each axis of a particular observation, denoted by a vector A, 
cannot be directly measured from the calibration device. We therefore have to use the output of the accelerome-
ter, which is under calibration, to estimate the real input acceleration A. Equation (8) describes the relationship 
between the uncalibrated acceleration output V and the real acceleration input A if assuming the scale factor and 
offset are accurate. Let us recall Equation (8) and simplify it as:  

( ).A S V O= +                                    (29) 

In order to obtain real acceleration A, we need to compute scale factor S and offset O first. Towards the end of 
Section 2, we mentioned the scale factor S  and offset O  can be recursively estimated by LSE. Based on Eq-
uation (17), the linearized 9-parameter triaxial accelerometer model can be rewrited as:  

1 1 1 ,Y V B ε ε= + +                                   (30) 

where Y is local gravity “1 g”, V1 represents uncalibrated acceleration from accelerometer, B1 is vector of re- 
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combined parameters defined in Equation (15), ε  is zero mean error and ε  is non zero error representing the 
mean of disregarded items. To apply LSE for Equation (30), let us disregard ε :  

1 1 1,Y V B ε= +                                      (31) 

where Y is local gravity “1 g”, V1 is the known quantity from accelerometer and B1 is re-combined parameter by 
scale factor S and offset O. S1 and O1 can then be solved by using LSE as shown in Equation (18).  

From Equation (29), we have  

( )1 1 1 1 .A S V O= +                                   (32) 

Due to the fact that we neglected some little impact items during LSE, A1 will not be exactly the same as real 
acceleration A, but A1 is closer to real acceleration A comparing to V1. In this case, when A1 is closer to A, the 
value of offset O will be reduced. Recall from Section 2 that all disregarded items contain offset O, it means the 
mean of the summation of all disregarded items ( )ε  will reduce. We replace V1 with A1 (A1 is marked as 2V  
in Equation (33) and apply LSE again for the equation below with less impact from ε :  

2 2 2 .Y V B ε= +                                     (33) 

From Equation (15) and Equation (18), the new scale factor S2 and offset O2 can then be solved. Recall 
Equation (29):  

( )2 2 2 2 .A S V O= +                                   (34) 

In this case, 2A  will be even closer to real acceleration A  comparing to ( )1 2A V . 
Let us repeat this procedure, Ai is approaching to real acceleration A while offset O is reducing to 0. The ac-

curacy of LSE will increase because all disregarded items contain offset O will drop to 0. Eventually, offset O 
and cross-axis factors 

nijS  will be 0, sensitivity factor of each direction 
niiS  will be 1. Then this acceleration 

nA  will be optimal estimation of real acceleration A. 
The overall equation of Equation (29) is:  

( )( )( )2 1 1 1 2 .n n nA S S S V O O O= + + +                         (35) 

Now, as nA  can be applied for experiment evaluation, this recursive procedure can guarantee the accuracy of 
the evaluation for posterior type D-efficiency. 

We performed the calibration experiment in the Center of Health Technologies (CHT), University of Tech-
nology, Sydney (UTS), without using a turntable. In contrast with the ideal setting, the posterior type D-effi- 
ciency for our experiment is around 99.7% which is slighter smaller than 100%. It indicates our experiment 
achieved desired results. 

Experimental results also showed the Mean Square Error (MSE) has been reduced from 0.00344 g2 to 
0.000255 g2 by the proposed experimental design/calibration method.  

5. Conclusion 
This study investigates the DoE for autocalibration of triaxial accelerometer in a wearable micro Inertial Mea-
surement Unit (μ-IMU), and our contribution is two-fold. Firstly, a new model linearization strategy is proposed 
to linearize the nonlinear model associated with the autocalibration of triaxial accelerometer. The major tech-
nique of the proposed linearization strategy is based on recombination of parameters rather than local lineariza-
tion around observation point (e.g. Taylor expansion). With such a linearized model, the classical linear model 
identification and DoE approaches can be applied to calibrate the triaxial accelerometer in a non-experimental 
environment. The second contribution is that this paper introduces a new experimental scheme, Icosahedron de-
sign. We have proved that this scheme is both G-optimal and D-optimal for the linearized 9-parameter triaxial 
accelerometer model. Experimental results also demonstrate that the proposed DoE scheme can significantly 
decrease the MSE of triaxial accelerometer after calibration. This indicates that the proposed linearization me-
thod is reliable and efficient. We believe that the proposed experimental design approach can provide an effi-
cient tool for the users of wearable sensors to efficiently calibrate the sensors in free living condition.  
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