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Sentinel-1A data are widely used in interferometric synthetic aperture radar

(InSAR) studies due to the free and open access policy. However, the short

wavelength (C-band) of Sentinal-1A data leads to decorrelation in numerous

applications, especially in vegetated areas. Phase blurring and reduced

monitoring accuracy can occur owing to changes in the physical and

chemical characteristics of vegetation during the satellite revisit period,

which essentially makes poor use of SAR data and increases the time and

economic costs for researchers. Interferometric coherence is a commonly

used index to measure the interference quality of two single-look complex

(SLC) images, and its value can be used to characterize the decorrelation

degree. The normalized difference vegetation index (NDVI) is obtained from

optical images, and its value can be used to characterize the surface vegetation

coverage. In order to solve the problem that Sentinel-1A decorrelation in the

vegetated area is difficult to estimate prior to single-look complex interference,

this paper selects a vegetated area in Sichuan Province, China as the study area

and establishes two two-order linear quantitative models between Landsat8-

derived normalized difference vegetation index and Sentinel-1A interferometric

coherence in co- and cross-polarization: WhenNDVI at extremely high and low

levels, coherence is close to zero, while NDVI and coherence show two

different linear relationships in co- and cross-polarization in terms of NDVI

at the middle level. The models global error basically obeys the normal

distribution with the mean value of −0.037 and −0.045, and the standard

deviation of 0.205 and 0.201 at the VV and VH channels. The two models

are then validated in two validation areas, and the results confirm the reliability

of the models and reveal the relationships between Sentinel-1A InSAR

decorrelation and vegetation coverage in co- and cross-polarization, thus

demonstrating that the NDVI can be applied to quantitatively estimate the

InSAR decorrelation in vegetated area of Sentinel-1A data in both polarization

modes prior to SLC interference.
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1 Introduction

Sentinel-1A data were made available to users worldwide on

3 October 2014 (Potin et al., 2016). Since the time, Sentinel-1A

data have been widely used in seismic and geological structure

monitoring (Suresh and Yarrakula, 2020; Han et al., 2022),

volcano monitoring (Guo et al., 2019; Bato et al., 2021; Corsa

et al., 2022), glacier monitoring (Liang et al., 2021a; Zhang et al.,

2021a; Manjula et al., 2022), agricultural monitoring and

mapping (Diniz et al., 2022; Guo et al., 2022; Wuyun et al.,

2022), other deformation mapping fields (Dai et al., 2016; He

et al., 2020; Zhao et al., 2020), and are also an important C-band

(wavelength = 5.5 cm) data source in the field of interferometric

synthetic aperture radar (InSAR) and agriculture. However, the

short-wavelength characteristics bring a range of limitations to

its application, especially in vegetated areas, because C-band

signals normally do not penetrate the surface or top layer of the

forest (i.e., leaves and twigs) (Anh and Hang, 2019). Phenological

changes to vegetation—or even leaf and branch movement—can

lead to decorrelation (Merchant et al., 2022), which is a primary

error source that limits the capability of InSAR for deformation

mapping in areas with low coherence (Liang et al., 2021b) and

what’s more, its data handing, processing, and interpretation are

barriers preventing a rapid uptake of SAR data by application

specialists and non-expert domain users in the field of

agricultural monitoring (Kumar et al., 2022).

Previous studies have shown that decorrelation in vegetated

areas must be estimated using interferometric coherence

(hereinafter referred to as coherence) or other indicators after

the interference of two single-look complex (SLC) images (Sedze

et al., 2012; Jiang et al., 2014). This inevitably leads to blind spots

in the data selection, which makes it difficult for researchers to

select the most effective interferometric pairs, thus reducing the

efficiency of InSAR surface deformation monitoring, making

poor use of SAR data, and increasing the time and economic

costs for researchers. An accurate estimate of the decorrelation

prior to SLC interference would therefore be very helpful to

overcome the weaknesses of post-interference estimations,

especially for the short-wavelength C-band Sentinel-1A data.

Coherence refers to the complex correlation between two

complex SAR images and consists of a phase and a magnitude

component (Abdel-Hamid et al., 2021). Coherence can be used to

measure the quality of interference fringes and quantify the

amplitude and phase changes of image pixels in a complex

cross-correlated InSAR image pair (Tampuu et al., 2021). The

composition principle of coherence, which was proposed by

Wang et al. (Wang et al., 2010). and discussed in several

studies (Pinto et al., 2013; Wang et al., 2015b, 2015a),

essentially states that correlation in pass-to-pass,

interferometric radar can be degraded by thermal noise, a lack

of parallelism between radar flight tracks, spatial baseline noise,

and surficial changes (Zebker and Villasenor, 1992). The total

coherence is accordingly considered to represent the

contribution of thermal noise decorrelation, spatial

decorrelation, and temporal decorrelation.

Thermal noise decorrelation is determined by thermal noise

in the interferometric instrument (Jung et al., 2016) and can

generally be ignored. Spatial decorrelation can be directly

estimated by a formulation given in the literature (Lee and

Liu, 2001). However, the mechanism of temporal

decorrelation is most complicated, which is difficult to model

(Zhang et al., 2021b). Temporal decorrelation is a mixture of

natural changes and changes possibly associated with major

events (Jung et al., 2016). Decorrelation in vegetation coverage

areas is mainly caused by changes in the physical and chemical

characteristics of the vegetation. The most effective way to

estimate the decorrelation in vegetated areas is therefore to

establish a quantitative relationship between vegetation

coverage and coherence. Chen et al. (Chen et al., 2021)

developed a quantitative model between the Landsat5-derived

normalized difference vegetation index (NDVI) and long-

wavelength band (L-band, wavelength = 23.6 cm) ALOS-1/

PALSAR-1 coherence in co-polarization. The radar wave

emitted by the long-wavelength SAR satellite has a strong

penetrating power and can penetrate the vegetation canopy or

even directly reach the surface; its vegetation decorrelation is

therefore not particularly severe. However, the application

scenarios of this model have certain limitations and do not

account for the decorrelation differences between co-

polarization and cross-polarization. Other previous studies

have focused on qualitatively illustrating the relationship

between coherence and vegetation coverage (Santoro et al.,

2010; Arab-Sedze et al., 2014; Bai et al., 2020; Amani et al.,

2021), retrieving vegetation parameters (Engdahl et al., 2001;

Flynn et al., 2002; Blaes and Defourny, 2003) and vegetation

classifications (Hall-Atkinson et al., 2001; Canisius et al., 2019;

Nikaein et al., 2021) using SAR coherence.

The first vegetation index (VI) was proposed in 1969, and

there are now more than 100 developed Vis. Among them, the

NDVI stands out as the most widely used (Yang et al., 2020b,

Yang et al., 2020a, 2021b, 19, Yang et al., 2021a; Wang et al.,

2022). The satellite-based NDVI has been shown to be closely

related to vegetation coverage and is reliable for monitoring the

vegetation dynamics of land surfaces. The NDVI’s reliable

characterization of surface vegetation coverage allows its

quantitative relationship with interferometric decorrelation to

be established. This paper proposes two second-order linear

models between the NDVI and Sentinel-1A coherence

(interferometric decorrelation) in both VV-polarization and

VH-polarization in a study area in Sichuan Province, China.

The two models are validated in two validation areas. The

remainder of this paper is organized as follows. Section 2

provides an overview of the study and validation areas, data

processing methods, and how the models were established.

Section 3 discusses the results and potential future work. The

final section provides the conclusion of this study.
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2 Material and methods

2.1 Study area and validation areas

The study area is located in Sichuan Province, China,

adjacent to the western Sichuan Plateau to the west and the

Chengdu Plain to the east (Figure 1A), and covers an area of

approximately 340 km2. This region was selected based on the

following considerations. Although the formulation given in the

literature (31) is used to remove the contribution of spatial

decorrelation, the relatively flat terrain (average slope

angle <15°) of the study area minimizes the influence of

spatial decorrelation. The study area is densely covered with

vegetation, including cultivated land (mostly rice fields) and

forest, and there are few villages (Figure 1B). This area is

therefore not in the “comfort zone” of Sentinel-1A InSAR

deformation monitoring (i.e., cities, sparsely vegetated areas,

and other high coherent areas) and is easily affected by

decorrelation caused by vegetation, thus strengthening the

application value of the established models in this area.

The validation area A is adjacent to the study area

(Figure 1A), with similar terrain (average slope angle <13°)
and surface vegetation coverage, and also does not belong to

the “comfort zone” of Sentinel-1A InSAR deformation

monitoring. The reliability of the established models were

validated in this area.

The validation area B is located in the southeast of the study

area (Figure 1A), with larger average slope angle and more lush

vegetation cover, and the land surface type is mainly forest. The

established models were validated in this area based on SAR data

from different imaging perspectives to verify the reliability and

universality of the models.

2.2 Data and data preprocessing

We collected an approximately cloud-free Landsat-8

Operational Land Imager (OLI) image (Table 1) taken in the

summer to calculate the NDVI. The atmospheric correction and

radiometric correction were first performed on the Landsat8 OLI

image, and the image was cropped based on the vector

boundaries of the study area and validation areas, then we

calculated the NDVI (Figure 2) based on the following equation:

NDVI � PNIR − PRED

PNIR + PRED
(1)

where PNIR and PRED represent the reflection of the near-infrared

band and red band, corresponding to band-5 and band-4 of

Landsat8 OLI, respectively. The NDVI varies between [−1, 1]: it

is negative when the cloud cover is exceedingly high or the surface is

covered with water or snow; zero when the surface is covered with

rocks or bare soil; and positive when the surface is covered with

vegetation, where increasing positive values are associated with

increasing vegetation coverage.

For the SAR data, we collected descending Sentinel-1A

images (Table 2) covering the study area and validation area

A, and the data from different imaging perspective covering

validation area B (Table 3), footprints of Sentinel-1A data we

used are displayed in blue rectangle in Figure 1A. The following

three preprocessing steps were performed. (1) Interferometric

FIGURE 1
The study area and validation areas (A) Location of the study area and validation areas (B) Land cover map of the study area.
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pair SLC interference was performed using double-pass

differential interferometry, and precise orbit ephemerides and

shuttle radar topography mission (SRTM) DEM (30 m) were

used to correct the orbit errors and simulate the terrain phase,

respectively. (2) Multi-look processing was performed to

suppress speckle noise and ensure that the SAR images

maintained the same resolution as the Landsat8 image. (3)

The coherence was calculated and the contribution of the

spatial decorrelation was removed according to the theoretical

formula given in the literature (Lee and Liu, 2001). The

theoretical model (Nasirzadehdizaji et al., 2021) of coherence is:

γ � E[μ1μ2*]�������������
E[∣∣∣∣μ1∣∣∣∣2]E[∣∣∣∣μ2∣∣∣∣2]

√ (2)

Where γ indicates coherence, E[·] is the mathematical

expectation and μ* is the conjugate complex of the SLC

image. However, thermal noise and other factors of the radar

system can easily generate a jump in the calculation result. This

causes the coherence to present a strong spatial fluctuation,

which compromises the calculation

accuracy. The coherence calculation scheme based on the

amplitude data of the SAR. image can better resolve this problem.

TABLE 1 Landsat-8 image.

Sensor Path Acquisition data Cloud cover Resolution

Landsat-8 OLI 129 August11, 2019 0.89% 30 m

FIGURE 2
NDVI images (A) Study area (B) Validation area A (C) Validation area B.

TABLE 2 Sentinel-1A images covering the study area and validation area A.

Path Frame Acquisition date Temporal baseline Polarization mode

Master 62 489 3 July 2019 48 days VV/VH

Slave 62 489 20 August 2019 VV/VH

TABLE 3 Sentinel-1A images covering the validation area B.

Path Frame Acquisition date Temporal baseline Polarization mode

Master 164 490 3 August 2019 12 days VV/VH

Slave 164 490 15 August 2019 VV/VH
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Although thermal noise decorrelation is generally ignored, this

calculation strategy is still applied to minimize the ambiguity of

the thermal noise on the coherence calculation results. The

formulation is given as:

γ � ∑N
n�1∑M

m�1
∣∣∣∣μ1(n,m)∣∣∣∣∣∣∣∣μ2(n,m)∣∣∣∣������������������������������������∑N

n�1∑M

m�1
∣∣∣∣μ1(n,m)∣∣∣∣2∑N

n�1∑M

m�1
∣∣∣∣μ2(n,m)∣∣∣∣2√ (3)

where M and N are the sizes of the data blocks for calculating

coherence, n and m are the row and column numbers in the data

windows, μ1(n,m) and μ2(n,m) represent the complex values at

the image coordinates (n, m) in the master and slave image data

blocks, respectively, |·| is the absolute value of the complex, and

|·|2 is the second-order norm of the data.

The coherence ranges from zero in the case of complete

decorrelation (i.e., the interferometric phase is only noise) to one

if the two signals are fully correlated (i.e., complete absence of

phase noise). The coherence reaches the maximum value

when the scatterer position and physical properties within the

averaging window are the same for the two observations. In

contrast, any differences in the scatterer position or properties in

the interval between the two observations introduce a phase

difference of two backscattered signals and accordingly cause the

coherence value to decrease (Nasirzadehdizaji et al., 2021). After

completing the coherence calculation, the coherence images were

geocoded and co-registered with the NDVI image by SRTM

DEM (30 m) and ground highly coherent points (HCPs), which

displayed in Figure 3. The data preprocessing work flow is shown

in Figure 4.

2.3 Contribution of temporal
decorrelation to coherence

The coherence obtained in Section 2.2 removed the

contribution of the spatial decorrelation, but the contribution

of the temporal decorrelation should also be considered. Rocca

et al. (Rocca, 2007) proposed an exponential decay function

between the coherence and temporal baseline for C-band ERS-1

data, and assigned an exponential decay constant to the model to

represent the decay rate of coherence with an increasing temporal

baseline. A decay function of surface reflectors was thereafter

proposed, which still maintains the correlation under a long-term

temporal baseline (Parizzi et al., 2009). Other time-coherence

decay functions have also been discussed (Krieger et al., 2007;

Sica et al., 2019). The study area in this paper has dense

vegetation and few highly coherent surface reflectors, thus the

time-coherence decay function does not need to account for

highly coherent ground objects. Multiple interferometric pairs

were generated under the multi-master image strategy, the

Sentinel-1A data used are displayed in Table 4. The results

show that when the temporal baseline is less than 216 days,

the VV-polarization coherence decays exponentially with

increasing temporal baseline, whereas the VV-polarization

coherence shows no notable decay trend when the temporal

baseline exceeds 216 days and fluctuates around a stable value

(Figure 5A). Figure 5B shows that the VH-polarization coherence

also decays exponentially with increasing temporal baseline when

it is less than 168 days. If the temporal baseline exceeds 168 days,

the VH-polarization coherence fluctuates around another stable

value, and also exhibits no clear decay trend. We therefore define

216 and 168 days as the critical exponent decay temporal

baselines for this study. The coefficients A1, t1, A2, and t2

shown in Figure 5 were obtained as 0.743, 206 days, 0.560,

and 222 days, respectively. The two stable values around

which the coherence fluctuated are 0.370 and 0.325, respectively.

2.4 Model building based on the absolute
value of the Pearson correlation
coefficient

All of the pixels in the NDVI image and coherence images

were initially involved in the analysis; however, we found that

large global errors were introduced and reliable relationships

could not be established. We therefore applied the window

sampling method proposed in the literature (Chen et al.,

2021) to account for the coherence value is related with the

FIGURE 3
Distribution of ground highly coherent points (HCPs) in the
study area. The background is 10-m resolution Sentinel-2 true-
color image.
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window size (Zhang et al., 2018). The steps of this method are as

follows. (1) Set a moving window to sample the NDVI image, and

a second moving window of the same size to simultaneously

sample the coherence image until the two windows traverse the

two images, respectively. (2) Calculate the Pearson correlation

coefficient (Pearson, 1895) between the NDVI pixels and

coherence pixels in the two windows based on Eq. 4.

ρ(X,Y) � ∑n
i�1(Xi − �X)(Yi − �Y)������������∑n

i�1(Xi − �X)2√ ������������∑n
i�1(Yi − �Y)2√ (4)

where ρ(X,Y) represents the Pearson correlation coefficient, Xi

represents the elements in a dataset, �X is the mean value of the

elements in this dataset, and Yi and �Y are the elements and mean

value of another dataset, respectively. (3) Set a threshold: if the

Pearson correlation coefficient between the two windows meet the

preset threshold, the pixels in the two windows are retained for

subsequent analysis; otherwise, all pixels in the two windows are

abandoned. The above method was used to build a quantitative

model between the NDVI and L-band ALOS-1/PALSAR-

1 coherence. For the C-band Sentinel-1A data, the strong

negative linear correlation between the NDVI and coherence

was revealed in preliminary experiments, showing a linear

decrease of the coherence with increasing surface vegetation

coverage. This method thus directly ignores numerous pixels

with a negative linear correlation and significantly reduces the

accuracy of the established models.

We therefore improved the correlation measurement of the

two windows using the above method by calculating the absolute

value of the Pearson correlation coefficient (marked as T) of the

pixels in the two windows to account for the large number of

pixels with a negative linear correlation. When the T value of the

pixels in the two windows is greater than or equal to the preset

threshold (marked as T0), these pixels are retained and

participate in the subsequent analysis; otherwise, they are

abandoned and not included in the analysis. Numerous

experiments revealed that this window sampling method with

the improved correlation measurement can significantly increase

the accuracy of the quantitative relationship between the

Landsat8-derived NDVI and Sentinel-1A coherence. The ideal

sampling window size and threshold for VV- and VH-

polarization were also obtained. The window sampling

method with the improved correlation measurement is shown

in Figure 6, the top and bottom pictures represent the NDVI and

coherence image, respectively. T is the absolute value of the

Pearson correlation coefficient, and T0 is the preset threshold.

FIGURE 4
Data preprocessing work flow.
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We have found that the size of the sampling window is

positively proportional to the amount of data that meet the

threshold. when the sampling window size is small (less than

5×5), there is a significant linear relationship between the two

variables, however, the global error of the models obtained after

fitting are significant. The amount of data that meet the threshold

are numerous in terms of the sampling window size are large

(more than 10×10), and there is no obvious functional

relationship between the two variables. Tables 5, 6 respectively

display the determination coefficient (R2) and root mean square

error (RMSE) of the optimal fitting function corresponding to

each threshold when the sampling window is between 5×5 and

9×9 at VV and VH channels, then we obtain the optimal

sampling window size and threshold at two polarization

channels considering the accuracy of the fitting function and

the global error of the models after fitting. The optimal sampling

window size is 5×5 for VV-polarization and the threshold is 0.7,

whereas the optimal values for VH-polarization are 9×9 and 0.6,

respectively. All of the pixels that met the preset threshold were

retained, and then some abnormal pixels are artificially

abandoned.

Then we get the relationships between the Landsat8-derived

NDVI and Sentinel-1A coherence of the retained pixels, as shown

in Figure 7.

Section 2.3 discussed the relationship between the coherence and

temporal baseline. The results indicate an exponential decay effect of the

temporal decorrelation on the coherence, and that the critical temporal

baseline of the VV- and VH-polarization coherences are 216 and

168 days, respectively. The temporal baseline of the interferometric pair

used in this study is 48 days (Table 2). In this study, inspiredby thework

of Chen et al. (Chen et al., 2021), it is necessary to add a temporal decay

factor to the models to improve their reliability. We then obtained a

second-order linear model between the Landsat8-derived NDVI and

Sentinel-1A coherence (VV) as follows:

γ1 �
⎧⎪⎪⎨⎪⎪⎩

0,−1<NDVI < 0.15,NDVI > 0.87

a1 · exp(− x
t1
) · NDVI + b1, 0.15≤NDVI ≤ 0.87

(5)
where γ1 and x represent the coherence (VV) and temporal

baseline of the interferometric pair, respectively, exp(−x/t1) and
t1 represent the temporal decay factor and exponential decay

speed factor of the coherence (VV), respectively, and a1 and b1

are parameters to be estimated. In this study, x = 48 days

(Table 2) and t1 = 206 days (Section 2.3).

A significant negative linear relationship was also observed

between the Landsat8-derived NDVI and Sentinel-1A coherence

(VH). The coherence (VH) was found to linearly decrease with

increasing NDVI at a slightly lower rate than that of the coherence

(VV). The second-order linear model between the Landsat8-derived

NDVI and Sentinel-1A coherence (VH) is given as:

γ2 �
⎧⎪⎪⎨⎪⎪⎩

0,−1<NDVI < 0.14,NDVI > 0.89

a2 · exp(− x
t2
) · NDVI + b2, 0.14≤NDVI ≤ 0.89

(6)
where γ2 and x represent the coherence (VH) and temporal

baseline of the interferometric pair, respectively, exp(−x/t2) and
t1 represent the temporal decay factor and exponential decay

speed factor of the coherence (VH), respectively, and a2 and b2

are parameters to be estimated.

The least squares method is used to fit the two formulas to

improve the robustness, thus yielding two quantitative models

between the Landsat8-derived NDVI and Sentinel-1A coherence.

The obtained parameters are a1 = −1.168, b1 = 0.992,

a2 = −1.086, and b2 = 0.905.

3 Results and discussion

3.1 Results and error analysis

Eq. 3 was used to calculate the true VV-polarization

coherence image (Figure 8A) of the study area according to

the amplitude information, and Eq. 5 was applied to estimate the

VV-polarization coherence image (Figure 8B) using the

TABLE 4 Sentinel-1A images used in the multi-master image strategy.

Path Frame Acquisition date Polarization mode

62 489 4 January 2019 VV/VH

62 489 16 January 2019 VV/VH

62 489 28 January 2019 VV/VH

62 489 09 February 2019 VV/VH

62 489 21 February 2019 VV/VH

62 489 29 March 2019 VV/VH

62 489 22 April 2019 VV/VH

62 489 28 May 2019 VV/VH

62 489 21 June 2019 VV/VH

62 489 3 July 2019 VV/VH

62 489 15 July2019 VV/VH

62 489 20 August2019 VV/VH

62 489 25 September2019 VV/VH

62 489 31 October 2019 VV/VH

62 489 6 December 2019 VV/VH

62 489 11 January 2020 VV/VH

62 489 16 February 2020 VV/VH

62 489 23 March 2020 VV/VH

62 489 28 April 2020 VV/VH

62 489 03 June 2020 VV/VH

62 489 09 July 2020 VV/VH

62 489 14 August 2020 VV/VH
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Landsat8-derived NDVI. For VH-polarization coherence, Eq. 3

was used to calculate the true coherence image (Figure 8C) and

estimate the coherence (Figure 8D) based on the model given in

Eq. 6 of the study area. The differences distribution obtained by

subtracting the estimated coherence from the true coherence in

VV-polarization and VH-polarization are displayed in Figures

8E, F, respectively. It can be found that the differences

distribution in VV-polarization are uniformly distributed

without significant concentrated error, whereas those in VH-

polarization are mainly concentrated in the red circle (village

distribution area) of Figure 8F.

As shown in Figure 9A, the mean error in VV-polarization is

-0.037 with a standard deviation of 0.205. Most of the errors

distribute between −0.3 and 0.3, and the global errors obey a

normal distribution. Figure 9B shows that the mean error in VH-

polarization is −0.045 with a standard deviation of 0.201, and the

global errors still obey the normal distribution.

3.2 Models validation

3.2.1 Performance of established models in
validation area A

We performed the same experiments in the validation area

A to consider the model reliability using consistent data and

data processing methods as those in the study area We then

obtained the true VV-polarization coherence image

(Figure 10A) and estimated the VV-polarization coherence

FIGURE 5
Relationship between the temporal baseline and coherence (A) VV channel (B) VH channel.

FIGURE 6
Window sampling method with improved correlation measurement.
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image (Figure 10B) of the validation area. Those in VH-

polarization are displayed in Figures 10C, D, respectively.

Figures 10E, F give the differences distribution in validation

area were obtained by subtracting the estimated coherence from

the true coherence. It can be found that relatively large errors

are concentrated in villages and river distribution areas, as

shown in the red circle in Figures 10E, F. Figure 11A shows that

the mean error in VV-polarization is -0.067 with a standard

deviation of 0.256, most of the errors distribute

between −0.4 and 0.4 and basically obey a normal

distribution. As shown in Figure 11B, the mean error in

VH-polarization is −0.065 with a standard deviation of

0.230, these errors are larger and more discrete than those in

the study area on the whole, but still roughly obey a normal

TABLE 5 performance of different sampling window size and threshold at VV channel.

Threshold/Window
size

5×5 6 × 6 7 × 7 8 × 8 9 × 9

\ R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE

0.5 0.259 40.480 0.320 34.040 0.365 30.960 0.380 29.270 0.381 28.410

0.6 0.349 26.730 0.406 22.090 0.429 19.900 0.443 18.150 0.459 17.760

0.7 0.616 12.570 0.481 12.750 0.483 12.320 0.560 9.721 0.552 7.846

0.8 0.514 8.048 0.581 5.025 0.647 4.737 0.581 3.240 0.696 2.856

TABLE 6 performance of different sampling window size and threshold at VH channel.

Threshold/Window
size

5×5 6 × 6 7 × 7 8 × 8 9 × 9

\ R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE

0.5 0.233 34.790 0.276 30.390 0.302 27.810 0.356 25.150 0.368 23.790

0.6 0.336 22.320 0.369 19.810 0.423 17.100 0.432 16.230 0.6347 11.990

0.7 0.411 13.000 0.516 10.750 0.571 8.949 0.495 8.877 0.6302 7.278

0.8 0.622 5.528 0.668 3.871 0.670 4.153 0.718 3.099 0.719 3.233

FIGURE 7
Relationship between the Landsat8-derived NDVI and Sentinel-1A coherence (A) VV channel (B) VH channel.
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FIGURE 8
Coherence images of the study area (A) True at VV channel (B) Estimation at VV channel (C) True at VH channel (D) Estimation at VH channel (E)
Differences distribution at VV channel (F) Differences distribution at VH channel.

FIGURE 9
The error histogram of the study area (A) VV channel (B) VH channel.
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FIGURE 10
Coherence images of the validation A (A) True at VV channel (B) Estimation at VV channel (C) True at VH channel (D) Estimation at VH channel (E)
Differences distribution at VV channel (F) Differences distribution at VH channel.

FIGURE 11
The error histogram of the validation area A (A) VV channel (B) VH channel.
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distribution and mostly distribute between −0.35 and 0.35.

Based on the error distribution in the study area and

validation area A, it is confirmed that the models given in

Eq. 5–6 are reliable without significant trend and random error.

3.2.2 Performance of established models in
validation area B

We used Sentinel-1A images from different imaging

perspectives covering validation area B that were

FIGURE 12
Coherence images of the validation area B (A) True at VV channel (B) Estimation at VV channel (C) True at VH channel (D) Estimation at VH
channel (E) Differences distribution at VV channel (F) Differences distribution at VH channel.

FIGURE 13
The error histogram of the validation area B (A) VV channel (B) VH channel.
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independent from the study area and validation area A

regard of the reliability and universality of the models, the

data processing method is consistent with the study area and

validation area A. As observed in Figure 12, the true

coherence images at the two polarization channels are

similar to the estimated coherence images, and the errors

are mainly distributed in the river region, even though these

areas are generally not included in the scope of InSAR

ground deformation monitoring. Consistent with the

study area and validation area A, we counted the error

distribution of the validation area B. For errors statistics,

Figure 13A shows that the errors of the validation area B at

the VV channel are concentrated between -0.4 and 0.4 with

the mean value and standard deviation are 0.040 and 0.190,

respectively. The error distribution basically follows a

normal distribution and no obvious random error

existing. Those in VH-polarization are displayed in

Figure 13B, most of the errors at VH channel distribute

between -0.35 and 0.35 with the mean value and standard

deviation are −0.020 and 0.193, respectively, and the global

error still basically obeys the normal distribution. Based on

the above distribution of differences and errors statistics, it

allows us to confirm that the established models perform well

in validation area B, and indicates the universality and

dataset independence of the models to a certain extent.

3.3 Discussion

Figures 8A,C indicate that the VV-polarization coherence

of the study area is higher than that of the VH-polarization

on the whole owing to its high sensitivity to volume

scattering, which strongly depends on the geometrical

alignment and vegetation characteristics (Gao et al., 2017).

The surface coverage of the study area is also mainly

cultivated lands, followed by woodlands. The main crop of

the cultivated lands is rice, for which the biophysical

parameters have been shown to have a stronger

relationship with VH-polarization than with VV-

polarization (Wali et al., 2020). The VH-polarization

radar signal is therefore more sensitive to rice than the

VV-polarization radar signal. The decorrelation of the

VH-polarization radar signal is accordingly more severe

and the overall coherence is lower for the same temporal

baseline.

The accuracy of the models in the study area is found to

be higher than that in the validation area A, owing to the

smaller and more concentrated global errors, for both VV-

polarization and VH-polarization. However, the same

interferometric pairs are used in the study area and

validation area A, thus the differences of the spatial

decorrelation and temporal decorrelation caused by

different imaging geometry and temporal baselines of the

interferometric pair are excluded. We interpret there to be

two reasons for the higher model accuracy in the study area.

(1) Although the topography of the study area is similar to

the validation area A, slight differences still remain. The

terrain fluctuation and average slope (average slope

angle <13°) in the validation area are slightly gentler than

those in the study area, thus the spatial decorrelation errors

caused by slight terrain differences may reduce the model

accuracy in the validation area, even if the contribution of the

spatial decorrelation is removed from the models. (2) The

estimated coherence of water system areas are zero based on

the established models. There are two rivers in the validation

area A where the true coherence is almost zero. Thus, owing

to the limited number of samples within the coherence

estimation window, the underestimation bias in the low

coherence area leads to a random distribution of pixels

within the completely decorrelated areas. Apart from this,

although the optimal sampling window size and threshold

for the two polarization modes were obtained

experimentally, the number of pixels participating in the

VH-polarization model fitting analysis was still more than

that in the VV-polarization model and the distribution was

more discrete, resulting in a lower model accuracy. The VV-

polarization model accuracy is therefore better than that of

the VH channel in both the study area and the validation

area A.

The performance of the established models in the

validation area B shows their universality and dataset

independence under different imaging geometry. Like the

validation area A, the estimated coherence errors at the two

polarization channels are still mainly concentrated in the

river distribution area, and there is no obvious error trend

and random error in other areas within the validation area B,

however, in a broader context, the established models need

to be verified in wider areas and richer dataset under

different imaging geometry to further illustrate their

robustness and universality.

The established models still have some weaknesses in terms

of the different abovementioned perspectives. We suggest that

the following improvements be made in subsequent study. (1)

Although the contribution of spatial decorrelation was removed

in the models, slight topographic differences between the

different areas can still introduce spatial decorrelation errors

into the models. A method to completely remove the

contribution of spatial decorrelation must therefore be

considered to improve the model universality. (2) We defined

the exponent decay critical temporal baseline as 216 and 168 days

for Sentinel-1A VV- and VH-polarization coherence,

respectively. These two critical values are greater than 48 and

12 days of the temporal baseline for the interferometric pairs used

in this study. It is thus reasonable to add a temporal decay factor

to the models. On the contrary, if the temporal baseline exceeds

the exponential decay critical temporal baseline, (i.e., when the
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coherence decays to a low level with no notable decay trend), it is

unreasonable to add such a decay factor. It is therefore important

to establish a more reliable relationship between the coherence

and interferometric pair temporal baseline in the case of a long-

term application to improve the model accuracy, even if such a

long-term baseline is not suitable for traditional InSAR surface

deformation monitoring in vegetated area of C-band sentinel-1A

data. (3) Rivers inevitably exist in some vegetated areas, thus a

quantitative relationship between the water indexes and

coherence must be established and incorporated into the

models to improve their robustness. Other factors should also

be considered to improve the models. For example, the weather

conditions in the study area leads to refractivity of the

atmosphere through which a traveling radar wave imparts a

phase delay (or advance) that can vary in both space and time

owing to the dependence of refractivity on various atmospheric

properties (Wadge et al., 2010). These induced propagation

delays (or advances) affect the quality of the interference

fringe and coherence calculation. Furthermore, different

response characteristics of the different vegetation types to the

SAR echo signals will also lead to differing coherence and

decorrelation (Zhang et al., 2016), which will be constructed

in future models.

4 Conclusion

This study establishes two second-order linear models

between the Landsat8-derived NDVI and Sentinel-1A

coherence in co- and cross-polarization that reveal the

relationship between InSAR decorrelation and vegetation

coverage. Coherence is found to linearly decrease with

increasing vegetation coverage, and the linear trend differs

depending on the co-polarization and cross-polarization

mode. The two models were validated simultaneously

using similar data in the validation area A and

independent imaging geometry data in the validation area

B. The NDVI obtained from free optical satellites can

therefore be used to estimate the coherence prior to

performing InSAR processing on vegetated areas to

monitor the surface deformation (i.e., prior to the

interferometric pair’s SLC interference) to quantitatively

estimate the decorrelation of these areas. The SAR data

selection can be determined using quantitative models

prior to interference, thereby increasing the research

productivity and reducing the time and economic costs.

This study fills the gap of the above models in C-band

SAR data, in addition to the C-band Sentinel-1A data, the

quantitative relationship between the NDVI and L-band co-

polarization ALOS-1/PALSAR-1 coherence has been

established (29), and other quantitative models should be

constructed for the L-band and X-band SAR data at different

polarization channels in the future.
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