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Abstract 
 

Analysis of Means by Ranks is a nonparametric statistical test procedure that was developed in Bakir 
(1989) but has rarely been applied in practice. This paper modifies and applies Analysis of Means by 
Ranks to a case study data involving the comparison of three contract proposals. For comparison 
purposes, we analyze the same data using the well-known Analysis of Variance, Analysis of Means, and 
the Kruskal-Wallis test. Analysis of Variance and Analysis of Means are two parametric (assume data to 
be samples from normal populations) test procedures whereas Kruskal-Wallis and Analysis of Means by 
Ranks are two nonparametric (or distribution-free) procedures. This paper shows that the parametric tests 
fail to detect a significant difference among three contract proposals, while the nonparametric tests do.  
The conclusions of the parametric tests are in doubt because a descriptive statistics analysis indicates that 
the required normality assumption is in doubt; the nonparametric conclusions are more trustful because 
the normality assumption is not required by nonparametric procedures. 
 

 
Keywords:  Analysis of means; analysis of means by ranks; analysis of variance; kruskal-wallis test; 

nonparametric. 
 

1 Introduction 
 
This paper modifies Analysis of Means by Ranks (ANOMR) and applies it to a case study in contract 
acquisition analysis. ANOMR is a nonparametric statistical test of hypotheses procedure that was developed 
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in Bakir [1] but has rarely been used in practice. The modified ANOMR is then applied to a case study data 
that involves the comparison of contract proposals. The paper also analyzes the same data using some well-
known parametric tests (assume data are samples from normal probability distributions) and nonparametric 
tests that do not require the normality assumption. The parametric tests are Analysis of Variance (ANOVA) 
and Analysis of Means (ANOM); the nonparametric tests are Analysis of Means by Ranks (ANOMR) and 
the Kruskal-Wallis (K-W). The paper uses data that appear in a case study of a course (CON 270) offered by 
the Defense Acquisition University (DAU). The case study stipulates that a Request for Proposal (RFP) was 
posted to perform inspection and calibration of some instruments. The Government has asked for historical 
performance data on last 30 maintenance operations of three contractors A, B, and C who submitted their 
data as shown in Table 1. The contractors based their proposals on the following “typical” hours per 
maintenance operation: 123 for A, 123 for B, and 118 for C. Descriptive statistics in Fig. 2 shows that 
contractors A and B reported the mean (=median) of their sample data while C reported the smallest of two 
modes of his sample data, Obviously, it is misleading to make evaluations based on the contractors’ reported 
“typical” hours only. A substantial part of contracts acquisition analysis in CON 270 uses descriptive 
statistics (central tendency, variation, shape, histograms, etc.) to evaluate and compare contract proposals. 
Descriptive statistics alone, however, does not provide clear-cut decision rules to detect significant 
differences among contractors. This paper appends the descriptive analysis by the above-mentioned 
significance test procedures. 

 
Table 1. Maintenance Hours for Contractors A, B, and C 

 
# A B C 
1 122.00 105.00 132.00 
2 124.00 124.00 134.00 
3 118.00 116.00 118.00 
4 123.00 123.00 131.00 
5 123.00 123.00 133.50 
6 125.00 123.00 125.00 
7 119.00 102.00 132.00 
8 118.00 107.00 133.00 
9 122.00 140.00 122.00 
10 126.00 137.00 135.00 
11 129.00 131.00 97.00 
12 128.00 128.00 128.00 
13 118.00 141.00 136.00 
14 127.00 115.00 127.00 
15 130.00 130.00 130.00 
16 123.00 116.00 135.00 
17 120.00 145.00 120.00 
18 120.00 120.00 106.00 
19 119.00 119.00 130.00 
20 126.00 100.00 126.00 
21 125.00 106.00 135.00 
22 124.00 113.00 133.00 
23 122.00 144.00 134.00 
24 121.00 103.00 118.00 
25 115.00 142.00 118.00 
26 121.00 111.00 134.50 
27 125.00 133.00 125.00 
28 123.00 130.00 136.00 
29 124.00 135.00 136.50 
30 130.00 128.00 128.00 

Source: Defense Acquisition University: https://icatalog.dau.edu/onlinecatalog/courses.aspx?crs_id=1838 
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Now we formulate the general problem of comparing several populations. Consider J independent random 

samples ����,���,⋯ ,���,��,�= 1,2,⋯ ,�   that have been drawn from J continuous populations 

��(�),��(�),… ,��(�)  . The data structure of the samples is shown in Table 2. 
 

Table 2. Data structure for a single factor comparison 
 
 Samples (Groups or Factor Levels) 
i \ j 1 2 … j … J 
1 y11 y12 … yij … y1J 

2 y21 y22 … y2j … y2J 

… … … … … … … 
i yi1 yi2 … yij … yiJ 

… … … … … … … 
Sample Total y.1 y.2 … y.j  y.J 

Sample Mean ��.� ��.� … ��.� … ��.� 

 
The jth sample total and mean are, respectively 
 

�.� = ∑ ���
��
���

        and       ��.� =
�

��
∑ ���
��
���

 ,    j= 1, 2, …, J.              (1) 

 

 If � = ∑ ��
�
���    represents the total number of observations in the combined sample, then the grand total 

and grand mean of the combined sample are 
 

�..= ∑ ∑ ���
��
���

�
���  and ��..=

�

�
�..                 (2) 

 
The general purpose of most comparison test procedures is to detect statistically significant differences 
among the J populations.  Some procedures are specifically designed to detect significant differences in the 
locations (central tendency measures), some for detecting differences in the spread (or variation), and others 
for detecting broad-type of differences in the populations. Most statistical test procedures impose some 
restrictive assumptions on the probability distributions of the populations.  Parametric tests assume the 
populations have normal distributions; nonparametric tests, do not assume any type of probability 
distribution on the data.  
 
The well-known ANOVA and the less-well-known ANOM are two parametric tests designed to detect 
significant differences in the central values (means) of the populations. The K-W and ANOMR are two 
nonparametric tests designed to detect significant differences in the central locations of the populations. To 
detect broad-type of differences (not necessarily center or variance) among several populations, one can use 
extensions of the two-sample Kolmogorov-Smirnov test or the Cramer-von Mises test; for a reference see 
Conover [2] A thorough textbook on nonparametric statistics is Gibbons and Chakraborti [3]. 
 
Results in this paper show that the parametric tests (ANOVA and ANOM) fail to detect significant 
difference among the three contractors’ data in Table 1, while the nonparametric do. The parametric 
conclusion is in doubt because the descriptive statistics analysis in Section 2 shows that contractors B and C 
data are far from being samples from normal populations; thus, the parametric assumption of normality is 
not satisfied. The nonparametric procedures (ANOMR and K-W) do detect significant difference among the 
contractors; this conclusion is more trustful because the data does not have to be normally distributed for 
nonparametric procedures. Several authors have discussed the implications of parametric and nonparametric 
test statistics in data analysis. Murray [4] studied the effect of using parametric or nonparametric tests on 
data of the Likert scale. Kim [5] discussed the benefits of using nonparametric methods in clinical trials. 
Egboro [6] demonstrated that incorrect choice between parametric and nonparametric tests may lead to 
incorrect conclusions.  



Section 2 of this paper presents the descriptive statistics analysis of the
present the parametric test procedures: ANOVA and ANOM. Sections 5 and 6 present the nonparametric 
tests: ANOMR and K-S. Section 7 contains summary and conclusion.
 

2 Descriptive Statistics Analysis
 
Descriptive (or summary) statistics is a collection of numerical measures and graphics that can describe 
important characteristics of a numerical data set. Table 3 lists some of the common descriptive statistics 
measures including measures of central tendency, measures of vari
descriptive statistics includes drawing trend lines, histograms, and box plots.  The summary measures of a 
data set are often compared to those of the normal probability distribution. The normal probability density 
function (pdf) and its curve (bell-curve) are given in Formula 3 and Figure 1, respectively. 
 

�(�)=
�

�√��
��(���)

�/���;    −∞ < �

 
Mean �(�)= �  ��� ��������= ��

 
The graph of the normal pdf, in Fig. 1, is symmetric (about the mean) and bell
asymptotic to the horizontal axis. 
  

Figure 

For a normal population, the mean (or expected value), the median, and the mode have identical value; the 
skewness and excess kurtosis have zero values. A data set with negative skewness indicates an asymmetric 
curve with a long tail extending to the negat
curve with a long tail extending to the positive side (right). Data with zero excess kurtosis (such as the 
normal) is termed mesokurtic, with negative excess kurtosis is termed platykurtic (flatt
normal), and with positive excess kurtosis is termed leptokurtic (sharper peak than the normal.) 
 
The descriptive statistics in Fig. 2 show that data sets A and B have same mean of 123.0, and set C has a 
mean of 127.6. For data set A, the histogram, skewness = 0.1 and kurtosis = 
being normally distributed. Data set B is symmetric (skewness = 
of -1.0 indicate a flatter curve (platykurtic) than the normal.  Data
kurtosis of 3.5 indicate an asymmetric peaked curve (leptokurtic).  In conclusion, although the data sets have 
approximately similar means, they greatly differ in the shape of their probability distributions. Further,
data sets differ in their variability with coefficients of variations 3.1% for A, 11% for B, and 7.2 for C.
 
Based on the descriptive statistics analysis in Fig. 2, it is quite rational to make a preliminary conclusion that 
the historical performance data of the three contractors differ in more than one aspect. In the ensuing 
sections of this paper, we use more sophisticated statistical inference test procedures (ANOVA, ANOM, 
ANOMR, and K-W) to reach more concrete conclusions. 
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Figure 1. Normal Distribution (Bell) Curve 
 

For a normal population, the mean (or expected value), the median, and the mode have identical value; the 
skewness and excess kurtosis have zero values. A data set with negative skewness indicates an asymmetric 
curve with a long tail extending to the negative side (left); a positive skewness indicates an asymmetric 
curve with a long tail extending to the positive side (right). Data with zero excess kurtosis (such as the 
normal) is termed mesokurtic, with negative excess kurtosis is termed platykurtic (flatter peak than the 
normal), and with positive excess kurtosis is termed leptokurtic (sharper peak than the normal.) 

The descriptive statistics in Fig. 2 show that data sets A and B have same mean of 123.0, and set C has a 
histogram, skewness = 0.1 and kurtosis = -0.4) indicate that it is close to 

being normally distributed. Data set B is symmetric (skewness = - 0.1), but its histogram and excess kurtosis 
1.0 indicate a flatter curve (platykurtic) than the normal.  Data set C with skewness = -1.8 and excess 

kurtosis of 3.5 indicate an asymmetric peaked curve (leptokurtic).  In conclusion, although the data sets have 
approximately similar means, they greatly differ in the shape of their probability distributions. Further,
data sets differ in their variability with coefficients of variations 3.1% for A, 11% for B, and 7.2 for C.

Based on the descriptive statistics analysis in Fig. 2, it is quite rational to make a preliminary conclusion that 
data of the three contractors differ in more than one aspect. In the ensuing 
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Figure 2. Descriptive Statistics of Historical Performance Data of Contractors A, B, and C

Historical Data Contractor, A, B, and C

A B C Bin A Frequency
122.00   105.00  132.00  115 1
124.00   124.00  134.00  118 3
118.00   116.00  118.00  121 6
123.00   123.00  131.00  124 10
123.00   123.00  133.50  127 6
125.00   123.00  125.00  More 3

119.00   102.00  132.00  

118.00   107.00  133.00  

122.00   140.00  122.00  

126.00   137.00  135.00  Bin B Frequency
129.00   131.00  97.00   100 1
128.00   128.00  128.00  109 5
118.00   141.00  136.00  118 5
127.00   115.00  127.00  127 6
130.00   130.00  130.00  136 7
123.00   116.00  135.00  More 6

120.00   145.00  120.00  

120.00   120.00  106.00  

119.00   119.00  130.00  Bin C Frequency
126.00   100.00  126.00  97 1
125.00   106.00  135.00  104.9 0
124.00   113.00  133.00  112.8 1
122.00   144.00  134.00  120.7 4
121.00   103.00  118.00  128.6 7
115.00   142.00  118.00  More 17

121.00   111.00  134.50  

125.00   133.00  125.00  

123.00   130.00  136.00  Descriptive Statiatics for Contractors A, B, and C
124.00   135.00  136.50  A B C
130.00   128.00  128.00  Mean 123.0 123.0 127.6

Standard Error 0.7 2.4 1.7

Median 123.0 123.0 130.5

Mode 123.0 123.0 118.0

Standard Deviation 3.8 13.4 9.2

Sample Variance 14.1 180.1 84.6

Kurtosis -0.4 -1.0 3.5

Skewness 0.1 -0.1 -1.8

Range 15.0 45.0 39.5

Minimum 115.0 100.0 97.0

Maximum 130.0 145.0 136.5

Note: Bins are the upper class Sum 3690.0 3690.0 3828.5

limis of a histogram Count 30 30 30

Coeff of Variation 3.05% 10.9% 7.2%
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3 Analysis of Variance (ANOVA) 
 
The single-factor (or one-way) ANOVA procedure assumes that the data represent independent random 
samples drawn from normal populations having the same variance. If  ∆� represents the central value (mean 

or median) of the jth population, then ANOVA is designed to test the following null (H0) and alternative (Ha) 
statistical hypotheses: 
 
��: ∆�= ∆�= ⋯ = ∆�= ⋯ = ∆�    and    ��: ��� ��� ∆

′� ��� �����                            (4) 

 
 To test for a significant difference among the population means, ANOVA decomposes the total variation in 
the data into variation between groups and variation within groups (sometimes called error or residual):  
 
Total Variation = Between Groups Variation + Within Groups Variation 
 

∑ ∑ ���� − ��..�
���

���
=�

��� ∑ �����.� − ��..�
��

��� + ∑ ∑ ���� − ��.��
���

���
�
���                  (5) 

 
The terms in Formula 5 are called sums of squares (SS): Total sum of squares (SStotal) on the left, Between 
Groups sum of squares (SSbetween) in the middle, and Within Groups (or error) sum of squares (SSerror) on the 
extreme right. These sums of squares are then divided by their corresponding degrees of freedom (df) to 
produce mean squares (MS). The test statistic of the single-factor ANOVA procedure is  F= MSbetween/MSerror  
which has an F-distribution with (J-1, N – J) degrees of freedom under the null hypothesis of no significance 
difference;  see Table 4. 
 

Table 4. Single factor ANOVA table 
 
Source of Variation SS df MS F P-value 
Between Groups SSbetween J - 1 SSbetween/(J – 1) MSbetween/MSerror Computer 

generated 
Within Groups (error) SSerror N - J SSerror/(N – J)   
Total SStotal N - 1    

 
The ANOVA test procedure is judged significant if the P-value of the F-test statistic is small (less than a 
commonly assumed significance level of 0.05). Table 5 shows Excel’s Single-Factor ANOVA output when 
applied to the data of Table 1.  
 

Table 5. Results of single-factor ANOVA for Data in table 1 
 
Source of Variation SS df MS F P-value 
Between Groups 426.27 2 213.14 2.294 0.107 
Within Groups (error) 8084.34 87 92.92   
Total 8510.61 89    

 

The P-value of 0.107 in Table 5 results in concluding no significant difference among the three contractors; 
a conclusion that contradicts the findings of the descriptive statistics of Section 2.  We should doubt the 
ANOVA conclusion because the descriptive analysis in Section 2 shows that data sets B and C are not 
normally distributed. 
 

4 Analysis of Means (ANOM) 
 
Ott [7] developed the ANOM procedure to detect statistically significant differences among several 
population means as expressed in Formula (4). ANOM assumes that data represent independent random 
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samples from normal populations having the same variance. ANOM plots the sample means on a chart that 
has a lower decision line (LDL), a central line (CL), and an upper decision line (UDL). The ANOM 
procedure judges the populations whose sample means fall below LDL or above UDL to be significantly 
different from the rest that fall within the decision lines. If all sample means fall within the decision lines, 
then there is no significant difference among the populations. A concise summary of ANOM and its variants 
can be found in Wheeler [8]. 
 
 In this paper, we present the ANOM mathematical details when the sample sizes are equal (the balanced 
case); details of the unbalanced case can be found in Nelson [9] and Nelson et al. [10]. The decision lines for 
the balanced case of ANOM are   
 

��� = ��..− ℎ(�; �,�)���������
���

�
                   (6) 

 
�� = ��..                      (7) 
 

��� = ��..+ ℎ(�; �,�)���������
���

�
                     (8) 

 
Nelson [11,12] provides tables for the critical values ℎ(�; �,�) that depend on a desired significance level α, 
the number of samples J, and the error degrees of freedom,  .  
 

 
 

Fig. 3. ANOM chart for contractors A, B, and C 
 
Now we apply ANOM to detect significant differences among the contractors’ data in Table 1. From the 
ANOVA results in Table 5, we read, ������� = 92.92, � = 87 , and J = 3. Also the means of contractors A, 
B, and C are: ��� = 123 , ��� = 123  , ��� = 127.62 , and the grand mean is ��..= 124.54 . Assuming 
significance level   ∝= 0.05, tables in Nelson et al. [10] give the critical value ℎ(�; �,�)= ℎ(0.05; 3,87)=
2.39, by interpolation. Therefore, the LDL, CL, and UDL of ANOM are: 
 

��� = 124.54 − 2.39√92.92�
���

��
= 121.106 . 

123 123

127.62

116

118

120

122

124

126

128

130

Contractor A Contractor B Contractor C

ANOM Chart for Contractors A, B, and C

LDL Centerline Mean UDL
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�� = 124.54 
 

��� = 124.54 + 2.39√92.92�
���

��
= 127.974 . 

 
The ANOM chart in Fig. 3 shows that all sample means fall within the LDL and UDL; thus, no significant 
difference is detected by the ANOM procedure.  However, this ANOM conclusion is doubtful or misleading 
because the assumption of normality required by ANOM is not satisfied as seen in the descriptive analysis of 
Section 2. 
 

5 Analysis of Means by Ranks (ANOMR) 
 
Bakir [1] developed ANOMR as a nonparametric analogue of the parametric ANOM. ANOMR is designed 
to test the hypotheses in Formula (4); it assumes that data represent independent random samples drawn 
from continuous (not necessarily normal) populations having the same variance. ANOMR replaces each 
observation ��� by its rank, denoted by ���, in the combined sample of all observations. If some observations 

have the same value (tied), they are assigned the average of their ranks. Symbolically,  
 

��� = ∑ ∑ ����� − ����
��
���

�
��� ,                      (9) 

 
The indicator function U(u) = 0, or 1 when u < 0 or u ≥ 0, respectively.  
 
Calculate, ��.�, the mean of the jth sample ranks by 
 

��.� =
�

��
∑ ���
��
���

 ,  �= 1,2,… ,� .               (10) 

 
Then the grand mean, ��.., of all ranks in the combined sample is  
 

��..=
�

�
∑ ∑ ��� =

��
���

�
���

(���)

�
 .                 (11) 

 
At a significance level, , the decision rule of ANOMR is to reject the null hypothesis �� in Formula (4), if 
for any �= 1,2,⋯ ,� 
 

���.� − ��..� > ��∝,�,��,��,⋯ ,���,                 (12) 

 

where the critical values ��∝,�,��,��,⋯ ,��� are determined to satisfy Formula (16), given below. 
 
Graphical implementation of the decision rule in Formula (12) amounts to plotting the ��.�′� on a chart that 
has the following decision lines:  
 

��� = ��..− ���; �,��,��,… ,��� ,                    (13) 
 
�� = ��.. ,                 (14) 
 

��� = ��..+ ���; �,��,��,… ,���  .               (15) 
 
ANOMR decision rule becomes: Reject the null hypothesis �� and consider the populations with rank means 
��.� falling outside the decision lines to be significantly different from the rest whose rank means fall within 

the decision lines. If all rank means fall within the decision lines, then there is no significant difference 
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among the populations. The critical values ���; �,��,��,… ,��� are determined to satisfy the condition that 

under �� , 
 

Pr�max��������.� − ��..� ≥ ���; �,��,��,… ,��� � =∝ .              (16) 

 

Bakir [1] Table 2 computed the exact critical values,  ���; �,��,��,… ,���  for comparing 3 or 4                         
samples each of size 4; however, this is not suitable for our data in Table 1 that consists of three samples of 
size 30 each.  
 

5.1 Modification of ANOMR 
 
We now develop a large sample (asymptotic) version of ANOMR that can be very useful at our current age 
of Big Data where sample sizes are extremely large. 
 

For �= 1,2,⋯ ,�, define the standardized ranks  �.� = ���.� − ��..�/����  , where ��� = �� − ���(� + 1)/

12��  is the variance of the jth rank mean ��.� . Based on results in Kruskal [13], Bakir [1] showed that the 

standardized ranks, �.�
′ � ,  have a joint asymptotic (as � → ∞,

��

�
→ ����) singular multivariate normal 

distribution. Assuming equal sample sizes (if not, use the average size (say, n) as the common sample size), 
the standardized rank means become 
 

�.� = ���.� − ��..�/�
(���)(���)

���
 ,               (17) 

 
At significance level, , the decision rule of the asymptotic ANOMR is to reject the null hypothesis��, if for 
any �= 1,2,⋯ ,� 
 

���� > �(∝; �) .                 (18) 

 

 The critical values �(∝;�) such that   ���max�������.�� ≥ �(∝; �)� =∝   , represent upper percentage 

points of a singular equicorrelated multivariate normal distribution; they are available in Nelson [11]. Bakir 
[1] Table 4 reprints these critical values for ∝= 0.1,0.05,0.01,0.001 and �= 3,4,⋯ ,20 .  
 
The modified asymptotic lower and upper ANOMR decision lines become  
 

������������� = ��..− �(∝; �)�
(���)(���)

���
   ,              (19) 

 
�� = ��..    ,                                     (20) 
 

������������� = ��..+ �(∝; �)�
(���)(���)

���
    .                         (21) 

 

5.2 Application of the Modified ANOMR 
 
The following steps show the application of the modified ANOMR to the data in Table 1. 
 
Step 1. Generate the ranks, ��� in Formula (9): Treating Table 1 as one combined sample, assign rank 1 to 

the smallest data value and rank 30 to the largest data value. If some data have the same value (tied), they are 
assigned the average of their ranks. Also calculate the rank means ��.� and grand rank mean ��.. as given in 

Table 6:  ��..= 45.5,  ��.� = 37.55,��.� = 42.4,��.� = 56.55 .  
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Step 2. Calculate the decision lines according to Formulae (19), (20), and (21): For significance level 
∝= 5% ��� �= 3,�� ���� �(∝; �)= 2.34 in Bakir [1], Table 4. 
 

 Using the grand rank mean  ��..= 45.5  , we calculate the following decision lines for the modified 
asymptotic ANOMR procedure: 
 

������������� = ��..− �(∝; �)�
(� − �)(� + 1)

12�
= 45.5 − 2.34 ∗ �

(90 − 30)(90 + 1)

12 ∗ 30
= 36.45  

 

�� = ��..= 45.5  
 

������������� = ��..+ �(∝; �)�
(���)(���)

���
= 45.5 + 2.34 ∗ �

(�����)(����)

��∗��
= 54.65  .    

 

Step 3. Draw the ANOMR chart: Draw three horizontal lines for ������������� = 36.45 , �� = 45.5 and 

������������� = 54.65 on a graph paper. Then mark the rank means ��.� = 37.55,��.� = 42.4,��.� = 56.55 
on the same graph. Of course we can use a computer package, such as Excel, to produce a nice and accurate 
chart. Fig. 4 displays the resulting chart for the modified ANOMR. 
 

Table 6. Ranks of the Three Contractors in the Combined Sample 
 

 Contractor A Contractor B Contractor C 
 31.5 5 69.5 
 42.5 42.5 75.5 
 17.5 13.5 17.5 
 37 37 67.5 
 37 37 74 
 47 37 47 
 22 3 69.5 
 17.5 8 72 
 31.5 86 31.5 
 51 85 79.5 
 60 67.5 1 
 57 57 57 
 17.5 87 82.5 
 53.5 11.5 53.5 
 63.5 63.5 63.5 
 37 13.5 79.5 
 25.5 90 25.5 
 25.5 25.5 6.5 
 22 22 63.5 
 51 2 51 
 47 6.5 79.5 
 42.5 10 72 
 31.5 89 75.5 
 28.5 4 17.5 
 11.5 88 17.5 
 28.5 9 77 
 47 72 47 
 37 63.5 82.5 
 42.5 79.5 84 
 63.5 57 57 
Rank Total �∙� 1126.5 1272.00 1696.50 

Rank Mean ��.� 37.55 42.40 56.55 

Grand Rank Mean ��∙∙ 45.50 45.50 45.50 
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Step 4. Interpret the chart and make conclusion: The ANOMR chart in Fig. 4 shows that the rank mean 
56.55 of contractor C falls above the asymptotic UDL (=54.65) while contractors A and B rank means fall 
within the decision lines. Therefore, ANOMR concludes that Contractor C is significantly different from the 
other two contractors. This conclusion contradicts the parametric ANOVA and ANOM conclusions, but it is 
consistent with the descriptive analysis findings of Section 2 that the contractors differ in more than one 
aspect. The fact that ANOMR does not require the data to be normally distributed, makes its conclusion 
more trustworthy than the conclusions of ANOVA and ANOM. 
 

 
 

Fig. 4. ANOMR chart for the rank means of contractors A, B, and C. 
 
 

6 Kruskal-Wallis (K-W) Test  
 
The K-W test procedure is a nonparametric procedure for testing the equality of several population centers 
(the hypotheses in Formula 4) in a one-way lay out model; it assumes that data represent independent  
random samples drawn from continuous (not necessarily normal) populations having the same variance. K-
W test has useful applications in management and marketing as in Akdeniz et al. [14]. 
 
To test for a significant difference among several population centers, the K-W test replaces each data value 
��� by its rank ���  (Formula (9)), in the combined sample. Referring to Hollander and Wolf [15], the K-W 

test statistic is denoted by H and has the formula: 
 

� = �
��

�(���)
∑

�.�
�

��

�
��� � − 3(� + 1) ,                (22) 

 

where  �.� = ∑ ���
��
���

  is the rank total of the jth sample. 

 
Using the rank totals in Table 6, we calculate the K-W test statistic H: 
 

� = �
12

90(90 + 1)
�
1126.5�

30
+
1272�

30
+
1696.5�

30
�� − 3(90 + 1)= 8.5677. 
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The test statistic H = 8.5677 with a  P-value of 0.0138 (as delivered by SPSS) leads to concluding that the 
three contractors are significantly different. This conclusion is consistent with the ANOMR conclusion in 
Section 5 and with the descriptive statistics findings in Section 2; however, it contradicts the parametric 
ANOVA and the ANOM conclusions.  
 

7 Summary and Conclusions 
 
This paper modifies Analysis of Means by Ranks (ANOMR) and applies it to a case study in contract 
acquisition analysis.  
 
The modified ANOMR is applied to data that involves the analysis of contract proposals. For comparison 
purposes, the same data are analyzed by some well-known parametric and nonparametric tests. The 
parametric tests are ANOVA and ANOM; the nonparametric tests are ANOMR and the K-W.  The data used 
appears in the Defense Acquisition University (DAU) class CON 270 case study that involves comparing 
three contract proposals.  
 
Results in this paper, show that the parametric test procedures (ANOVA and ANOM) do not detect a 
significant difference among the three contract proposals, while the nonparametric procedures do. The 
parametric conclusions are doubtful because a descriptive statistics analysis (skewness, kurtosis, histograms) 
indicates that the required parametric assumption of normality is not satisfied. The nonparametric procedures 
(ANOMR and K-W) do detect a significant difference among the contractors; this conclusion is more 
trustful because the assumption of normality is not required. Additionally, ANOMR has the advantage of 
producing charts with decision lines that can pinpoint which population is significantly different from the 
rest.  
 
Granted that a savvy researcher may advocate the use of a normality test (e.g., Anderson-Darling test) and 
then use an appropriate transformation to bring the data closer to normality. However, data transformation is 
usually cumbersome because one has to try several types of transformations (square root, logarithmic, etc.) 
before being successful. Even with a successful transformation, it is usually difficult or confusing to interpret 
the conclusions in term of the original population parameters. Actually, colleges (even statistics 
departments) rarely expose their students to tests for normality or data transformation topics.  
 
Using parametric (ANOVA and ANOM) test procedures without a preliminary examination of the 
probability distributions of the data could lead to misleading conclusions. Nonparametric (ANOMR and K-
W) test procedures are robust to the shape of the distribution and generally produce more reliable 
conclusions. Therefore, we advocate that it is easier and more reliable to use nonparametric tests routinely.  
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