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ABSTRACT 
 
Aims: This work aimed to identify SNP marker associated with QTLs controlling grain weight and 
protein and oil content in soybean grains, using genome wide association study (GWAS). 
Study Design:  Experimental design for field study was Complete Randomized Block. 
Place and Duration of Study: Departments of Breeding and Biotechnology at Coodetec in 
Cascavel, Palotina, Rio Verde and Sorriso, Brazil, between July 2013 and July 2016,  
Methodology: A set of 168 soybean varieties were evaluated in five environments and genotyped 
with a panel of 6,000 SNP markers. Protein and Oil content was obtained through NIR (Near 
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Infrared Reflectance). GWAS was made by mixed linear model and multiple regression analysis. 
Results: Six QTLs in five chromosomes explained from 10.4% to 26.6% of protein variation in three 
environments. Eleven QTLs in seven chromosomes explained from 14.4% to 39% of oil variation in 
five environments. Six QTLs in five chromosome explained 32.5% and 37.1% of grain weight 
variation in two environments.  
Conclusion: For the same trait, different QTLs was identified in different environments. It means 
that to use marker assisted selection for this traits in soybean breeding, the markers need to be 
validated or identified in the breeding population in each environment, before being used for 
selection. 
 

 

Keywords: Genome wide association study; GWAS; mixed linear model; multiple regression; 
stepwise. 

 

1. INTRODUCTION  
 

Soybean is the main agricultural commodity in 
Brazil, having been cultivated in 35 million ha in 
the country in 2017/18, with a total production of 
117 million tons [1]. Soybeans are grown mainly 
for their protein and oil contents, and these 
constituents comprise approximately 60% of the 
dry matter of the grains. In addition, soybean 
protein has high biological value [2], both for 
human and animal feed. 
 

Variation in protein and oil content in soybean is 
genetically controlled, but also strongly 
influenced by the environment conditions during 
the filling of the grains [3]. The interaction 
between the genetic and environmental 
components results in different levels of 
variations in each QTL expression, as answer of 
environmental variations. The identification of 
QTLs expressed in each environment can 
provide tools for identifying QTLs that are subject 
to interaction with the environment and those that 
are stable in more than one environment.  
 
Since oil and protein contents in soybeans are 
negatively correlated [4,5], the selection for 
simultaneous genetic gains for the two traits is 
difficult to perform successfully. As one of the 
causes of genetic correlation is a genetic linkage, 
the identification of recombinants can contribute 
to the simultaneous gain of both traits. Molecular 
markers associated with linked QTLs can be 
used to monitor the breakdown of binding 
between these QTLs [6].  
 
A large number of QTLs associated with protein 
and oil contents have already been identified in 
the soybean genome [7]. Many of these QTLs 
have been mapped with rather large confidence 
intervals, which diminishes the accuracy of these 
markers for marker assisted selection (MAS) in 
soybean breeding programs. Nowadays, with the 
cost-effective high density genotyping platforms 

and improved analytical methods for big data 
analysis, genome-wide association studies 
(GWAS) are promising forecasts in improving 
complex genetic traits in soybean. GWAS have 
the advantage of detecting smaller chromosomal 
regions affecting the trait and gives precise 
estimates of the size and direction of the effects 
of alleles in known loci [8].  
 
The objective of this work was to identify QTLs 
associated with oil and protein contents, as well 
as grain weight, in a panel of Brazilian soybean 
varieties evaluated in multiple environments 
using high density genotyping and GWAS 
approach. 
 

2. MATERIALS AND METHODS 
 

2.1 Study Material and Area 
 
A total of 168 Brazilian soybean varieties were 
evaluated in five environments: Cascavel, PR 
(781m altitude, latitude 24°57'20"S, longitude 
53°27'19"W) in 2013-14 and 2014-15; Rio Verde, 
GO (715m altitude, latitude 17º47'53"S, longitude 
50º55'41"W) in 2013-14 and 2014-15; and 
Sorriso, MT (365m altitude, latitude 12º32 '43 "S, 
longitude 55º42'41"W) in 2014-15. 
 

2.2 Experimental Design and Trait 
Analysis 

 
At each site, the experiments were conducted in 
a complete randomized block design with two 
replicates. The plots consisted of four rows, 5m 
long, with spacing of 0.45m. The determination of 
protein and oil content was performed at 
Coodetec, in Cascavel, Parana, Brazil. Twenty 
grams of grains from each experimental unit 
were milled in a Cyclone Sample Mill, and 3.6g of 
the milled sample was used for analysis. Protein, 
oil and moisture content was obtained by NIR 
(Near Infrared Reflectance) method in Dickey 



 
 
 
 

Nascimento et al.; JSRR, 20(4): 1-13, 2018; Article no.JSRR.44150 
 
 

 
3 
 

John FT-NIR equipment (model Instalab 600). 
The results were expressed as a percentage of 
the oil and protein contents in the dry matter, 
after correction as a function of the                 
moisture content. One hundred grain weight was 
obtained by weighing the grains in electronic 
scale, correcting the weight to the humidity of 
13%. 
 
Genomic DNA was extracted from leaf tissues 
collected from a mix of ten plants of each variety. 
DNA-easy Plant Kit (Qiagene) was used for DNA 
extraction, in the biotechnology lab of Coodetec, 
in Cascavel, Parana, Brazil. The samples were 
genotyped with 6,000 SNP (single nucleotide 
polymorphisms) using the Illumina 
BARCSoySNP6K BeadChip, which corresponds 
to a subset of SNPs from the SoySNP50K 
BeadChip [9]. Genotyping was conducted by 
Deoxi Biotechnology Ltda, in Aracatuba, Sao 
Paulo, Brazil. A total of 3,780 SNP markers, 
including polymorphic and non-redundant SNPs, 
SNP markers with greater than 10% minor allele 
frequency (MAF) and missing data value lower 
than 25% were used in subsequent analysis, with 
heterozygous markers treated as missing data 
according to Hwang et al. [10]. 
 
2.3 Data Analysis 
 
The phenotypic data from each environment 
were submitted to the Lilliefors normality               
test using the software GENES [11]. 
Characteristics that deviated from the normal 
distribution were not used in genomic association 
analysis. 

 
Population structure was inferred using the 
Bayesian clustering method implemented in the 
program InStruct [12]. The posterior probabilities 
were estimated using five independent runs of 
the Markov Chain Monte Carlo (MCMC) 
sampling algorithm for the numbers of groups 
genetically differentiated (k) varying from 2 to 10, 
without prior population information. The MCMC 
chains were run with 5,000 burn-in period, 
followed by 50,000 iterations. The convergence 
of the log likelihood was determined by the value 
of the Gelman-Rubin statistic. The best estimate 
of k groups was determined according to the 
lowest value of the average log-Likelihood and 
Deviance Information Criterion (DIC) values 
among the simulated groups [12]. The population 
structure Q matrix was used in association 
mapping analysis to avoid false positive SNP-

phenotype association due to the population 
structure. 
 
To account for the effects of population structure 
(Q) and genetic relatedness (K) among the 
cultivars, a mixed linear model (MLM) of 
association was employed. The structured 
association model (Q model), taking into account 
the genetic structure of the population was 
included in the association mixed model. The 
kinship coefficient matrix (K) that explain the 
most probable identity by state of each allele 
between cultivars was estimated using the 
program TASSEL [13,14].  
 
To identify non-redundant markers, markers with 
-Log10(P) value higher than 2 was used in 
multiple regression analysis, with Stepwise 
variable selection procedure and 5% probability 
of entry and exit. Multiple regression analysis 
was performed with the JMP program [15]. 
 
To identify markers on linkage disequilibrium in 
regions containing QTLs, linkage disequilibrium 
analysis was performed using the Haploview 
program [16]. Linkage disequilibrium blocks were 
formed by markers whose D' value was greater 
than 80%. 
 

3. RESULTS AND DISCUSSION 
 
The three characteristics evaluated showed a 
great variability between and within the five 
environments (Fig. 1), which demonstrates the 
effects of genetic (variation within environmental) 
and environmental (variation between 
environments) effects on the expression of these 
characteristics. 
 
Protein content in soybean grains ranged from 
29% to 48.1%, considering the five environments 
evaluated. In the Central region of Brazil (Rio 
Verde 2013-14 and 2014-15, and Sorriso 2014-
15), the frequency distribution of protein contents 
was similar (Fig. 1), with a higher frequency 
between 41% and 42% in Rio Verde 2013-14, 
and between 39% and 42% in Rio Verde and 
Sorriso in 2014-15. There was variation in the 
frequency distribution of protein contents in the 
two years of evaluation in Cascavel (2013-14 
and 2014-15). In 2013-14 the protein content 
was higher in all varieties, with a higher 
frequency between 42% and 43%, and in 2014-
15 it was lower, with a higher frequency between 
36% and 37%. 
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Table 1. Significant markers in the multiple regression with the stepwise method of model 
selection for the traits protein and oil content and 100 grain weight, in soybean  

 
Trait Maker Chrom Effect R

2
 

Protein Rio Verde 2013-14 Gm08_3272385_G_T 8 0.52 0.266 
Gm08_17579484_C_T 8 0.59 
Gm19_37893995_G_A 19 0.87 

Protein Rio Verde 2014-15 Gm10_43840376_T_C 10 0.56 0.141 
Gm13_27212330_G_A 13 0.44 

Protein Sorriso 2014-15 Gm20_30417244_C_T 20 0.61 0.104 
Oil Cascavel 2013-14 Gm01_1059407_T_C 1 0.91 0.390 

Gm08_21933156_G_A 8 0.75 
Gm14_27937142_C_T 14     0.32 

Oil Rio Verde 2013-14 Gm03_46214163_C_T 3 0.51 0.359 
Gm04_40811025_C_A 4 0.27 
Gm06_1328895_T_C 6 0.37 
Gm07_43189903_A_G 7 0.66 

Oil Cascavel 2014-15 Gm14_9642828_T_C 14 0.71 0.206 
Gm06_44474853_A_G 6 0.66 

Oil Rio Verde 2014-15 Gm03_3334303_C_A 3 0.56 0.144 
Oil Sorriso 2014-15 Gm07_35194991_A_G 7 0.32 0.156 

Gm08_21172458_T_C 8 0.30 
100 grain weight 
 Rio Verde 2014-15 

Gm02_48874048_G_A 2 0.55 0.325 
Gm04_42638631_T_C 4 0.74 
Gm19_40053178_G_A 19 0.51 

100 grain weight  
2014-15 

Gm13_22446130_C_T 13 1.00 0.371 
Gm08_2671408_T_C 8 0.47 
Gm13_6811934_T_G 13 0.82 

 
The oil content ranged from 14.9% to 29.3% in 
the five environments. The lowest oil content was 
observed in Cascavel 2014-15, with a higher 
frequency of varieties producing between 20% 
and 21% of oil (Fig. 1). The highest content was 
observed in Sorriso 2014-15, with the highest 
frequency of varieties producing between 25% 
and 26% of oil. In Rio Verde 2014-15 the highest 
frequency of oil content was between 24% and 
25%, and in Cascavel 2013-14 and Rio Verde 
2013-14, the highest frequency of oil content was 
between 23% and 24%. 
 
The weight of 100 grains varied from 6.6g to 
25.0g. Heavier grains were obtained in Rio Verde 
2014-15 and Sorriso 2014-15, with a higher 
frequency between 14g and 16g per 100 grains 
(Fig. 1). The lighter grains were obtained in Rio 
Verde 2013-14, with a great frequency of 
varieties with less than 10g per 100 grains, due 
to water stress in the period and grain filling in 
this environment. In Cascavel 2013-14 and 2014-
15, the highest frequency of the varieties had 
weight of 100 grains between 10g and 12g. 
 
Quantitative characteristics are influenced by 
environmental effects, and this influence can be 

observed in the results presented in Fig. 1. The 
same set of variances, evaluated in different 
environments, may present different values for 
the quantitative characteristics. And this 
influence of the environment on the expression of 
the quantitative characteristics can be as much 
between different places in the same year of 
cultivation, as between different years of 
cultivation in the same place. 
 
The frequency distributions of protein contents in 
Cascavel in 2013-14 and in 2014-15, and the 
weight of 100 grains in Cascavel 2013-14, 2014-
15 and in Rio Verde 2013-14 deviated from the 
frequencies expected under normal distribution 
(Fig. 1). These data were not used for GWAS. 
 

In the three environments in which the protein 
content data were considered (Rio Verde 2013-
14, 2014-15 and Sorriso 2014-15), six QTLs 
associated with protein content were identified in 
the chromosomes 8, 10, 13, 19 and 20 (Table 1). 
In Rio Verde 2013-14, two markers were 
identified on chromosome 8. These two markers 
are located at a distance of 14.3Mb, and in 
addition, are in linkage equilibrium (Fig. 2), and 
are two distinct QTLs on chromosome 8. 
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Fig. 1. Distribuition of frequency of protein and oil content, and 100 grain waight (P100) in soybean, in multiple environments. T
same trait are in the same scale. D = Dcalculated in the Lilliefors normality test. *significative at 5% proba
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No QTL associated with protein content was 
repeated in more than one environment (Table 
1). The three QTLs identified in Rio Verde 2013-
14 explained 26.6% of the observed variation in 
protein content. The two QTLs identified in Rio 
Verde 2014-15 explained 14.1% and the QTL 
identified in Sorriso 2014-15 explained 10.4% of 
the variation observed in protein content. 
 
The difference in the average protein content of 
the varieties containing the haplotypes 
associated with the lowest protein content and 
the varieties containing the haplotypes 
associated with the highest protein content was 
4.3, 2.1 and 1.2 percentage points in Rio Verde 
2013-14, Rio Verde 2014 -15 and Sorriso 2014-
15, respectively (Fig. 3). It is noted that the 
difference in protein content between haplotypes 
is proportional to the number of markers, and 
consequently of QTLs, in each haplotype. This 
demonstrates the additive effect of QTLs 
associated with protein content. Each QTL 
contributes a small part of the variation, and the 
total variation is the sum of the effects of each 
QTL. Fig. 3a shows this continuous variation in 
protein contents as a function of the allelic 
composition of the haplotypes. 
 
For the oil content, 11 QTLs were identified on 7 
chromosomes (1, 3, 4, 6, 7, 8 and 14). In 
chromosome 8, two closely related markers 
associated with the oil content were identified 
(Table 1). The marker Gm08_21933156_G_A 
was significantly associated with the oil content 
in Cascavel 2013-14 and the marker 
Gm08_21172458_T_C in Sorriso 2014-15. 
These markers are 760kb apart. The marker 
Gm08_21933156_G_A is located in a block of 
linkage disequilibrium with four other markers 
(Fig. 2), and the marker Gm08_21172458_T_C 
is closely linked to this block of linkage 
disequilibrium. 
 
If considered in pairs, the marker 
Gm08_21443387_G_T is in linkage 
disequilibrium with both the marker 
Gm08_21933156_G_A and 
Gm08_21172458_T_C (Fig. 2). Given the 
proximity of these markers to the soybean 
genome, and both markers are in linkage 
disequilibrium with a third marker 
(Gm08_21443387_G_T), these two markers will 
be associated with the same QTL, and this QTL 
was identified in two environments: Cascavel 
2013-14 and Sorriso 2014-15. None of the other 
10 QTLs associated with oil content was 
repeated in more than one environment. 

In each of chromosomes 3, 6, 7 and 14, two 
markers associated with the oil content were 
identified. In these chromosomes, the markers 
associated with the oil content are in linkage 
equilibrium (Fig. 2), and therefore, each marker 
is associated with a different QTL. That is, in 
each of the chromosomes 3, 6, 7 and 14 two 
QTLs associated with the oil content was 
identified. 
 

The three QTLs identified in Cascavel 2013-14 
explained 39% of the observed variation in oil 
content. In Rio Verde 2013-14, four QTLs 
accounted for 35.9% of the variation. In Cascavel 
2014-15, two QTLs explained 20.6% and in Rio 
Verde 2014-15 one QTL explained 14.4% of the 
variation observed. In Sorriso 2014-15, two QTLs 
explained 15.6% of the variation (Table 1). 
 

The differences in the average oil content among 
the varieties containing the haplotypes 
associated with the lowest and the highest oil 
content were 3.4, 5.0, 2.4, 1.1 and 1.3 
percentage points in Cascavel 2013-14, Rio 
Verde 2013-14, Cascavel 2014 -15, Rio Verde 
2014-15 and Sorriso 2014-15, respectively (Fig. 
3). 
 

Six QTLs associated with the weight of 100 
grains of soybean were identified, three in Rio 
Verde 2014-15, which explained 32.5% of the 
variation, and three in Sorriso 2014-15, which 
explained 37.1% of the variation (Table 1). In the 
other environments, genomic association 
analysis was not performed since the weight of 
100 grains had no normal distribution. The two 
markers significantly associated with the weight 
of 100 grains identified on chromosome 13 in 
Sorriso 2014-15 are associated with two distinct 
QTLs, as they are distant in the soybean genome 
(15.6Mb), and are in linkage disequilibrium (Fig. 
2).  
 

No QTL associated with the weight of 100 grains 
was significant in both environments 
simultaneously. The difference between the 
average of 100 grains weight of the varieties with 
the haplotypes associated with the lowest weight 
of grains and the varieties with the haplotypes 
associated with the highest grain weight was 
3.8g in Rio Verde 2014-15 and 4.2g in the 2014- 
15. 
 

Protein and oil contents in soybean grains are 
negatively correlated [4, 5]. Pleiotropy and gene 
linkage are the cause of genetic correlation. No 
pleiotropic QTL was identified in this study. QTLs 
associated with protein and oil contents were 
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observed on chromosome 8. In the chromosome 
8, QTLs associated with the three evaluated 
traits were identified (Figure 2), demonstrating 
the genetic linkage of these characteristics, and 
consequently, the correlation that may exist 
between them.  
 

QTLs for the protein content was also identified 
linked to QTLs for the weight of 100 grains on 
chromosomes 13 and 19. For the oil content and 
weight of 100 grains, linked QTLs were identified 
on chromosome 4 (Fig. 2).  
 

In the soybean genome, 83 QTLs for protein 
content, 78 QTLs for oil content and 85 QTLs for 
grain weight are mapped [7]. QTLs for these 
three traits are mapped on all the 20 soybean 
chromosomes. Given the number of QTLs and 
the number of chromosomes of soybean, it is 
expected that it has several linked QTLs 
associated with these characteristics in the 
soybean genome. 
 

Several research have reported QTLs for protein 
and oil content in soybean varieties in Brazil. 
Soares et al. [17] mapped five QTLs on 
chromosomes 1, 3, 6, 15, and 18, which 
explained between 7.34% and 14.37% of the 
variation in protein content. Rodrigues et al. [18] 
mapped four QTLs that explained from 6.24% to 
18.94% of the variation in protein content in 
Brazilian soybean varieties, on chromosomes 1, 
5, 18, and 20. The same authors also identified 
three QTLs that explained 17.26% to 25.93% of 
the variation for the oil content in chromosomes 
5, 10 and 20.  
 
All these studies were carried out on mapping 
populations derived from controlled crosses. This 
is the first work to identify QTLs associated with 
protein and oil contents using greater germplasm 
variability, represented by a collection of 
varieties, and analysis of broad genomic 
association. At our knowledge, for 100 grain 
weight there are no mapping results from 
Brazilian varieties until now. 
 
In this work, in the GWAS using a mixed linear 
model, few significant markers were identified at 
0.1% probability (Fig. 4). This is the level of 
confidence typically used in GWAS jobs that use 
mixed linear models. However, at this level of 
probability it is expected that only QTLs of 
greater effect is significant. Due to the restricted 
level of significance, the chance of type II error 
(not identifying true QTLs) is greater. QTLs of 
lower effect associated with quantitative traits 

may possibly be identified at a lower level of 
significance. But using a lower level of 
significance can increase the chance of type I 
error (assume with true QTLs that do not exist).  
 
To balance error types (I and II), we used 
sequential analysis of MLM at 1% confidence 
level, followed by multiple regression analysis 
using only significant markers in the previous 
analysis. The use of all markers in multiple 
regression analysis could lead to the 
identification of spurious associations due to the 
presence of subpopulations or family structure 
within the population. Using only the markers 
selected by the MLM analysis, these spurious 
associations were avoided, since the population 
structure was considered in the MLM 
assessment. 
 
Using this sequential analysis of MLM and 
multiple regression with stepwise method of 
model choice, more markers were identified. By 
comparing the haplotypes formed by these 
markers it was possible to observe considerable 
differences between the averages of each 
haplotype, especially among the haplotypes 
associated with the highest and lowest values. 
This means that the use of this MLM and multiple 
regression analysis strategies was efficient in 
reducing type II error, without an increase in type 
I error.  
 
The QTLs identified in each environment were 
different for the same characteristic. This 
difference in expression of QTLs as a function of 
the environment illustrates the GxE interaction. 
Considering that in each environment different 
QTLs are responsible for the expression of the 
contents of protein and oil, and weight of 100 
soybean grains, and even in the same place, 
there is a difference between QTLs expressed 
between the years, the conventional strategy of 
MAS cannot be used. Instead, a preliminary 
association analysis should be performed in  
each generation of selection and in each 
environment.  
 

To do this, part of the soybean lines under 
evaluation must be assessed phenotypically and 
also genotyped with a set of thousands of 
molecular markers. In the initial stages of 
evaluation, when thousands of lines are being 
evaluated, less than 5% of the lines need to be 
evaluated phenotypically, to allow analysis of 
genomic association. Once the genotypic and 
phenotypic data from this sample of the lines are 
available, the genomic association analysis can 
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be performed in each environment, and the 
significant markers in each environment can be 

used to select the rest of the lines, which do not 
need to be evaluated phenotypically. 
 

 

Fig. 2. Linkage disequilibrium map of the regions containing QTLs in chromosomes with more 
than one QTL. Blue rectangle identifies markers associated with protein content, red rectangle 
identifies markers associated with oil content and black rectangles, markers associated with 

100 seed weight  

Chromosome 3 Chromosome 4

Chromosome 6 Chromosome 7

Chromosome 8

Chromosome 13 Chromosome 14

Chromosome 19
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Fig. 3. Average of protein and oil content, and 100 grain weight in soybean varieties grouped 
by haplotypes based on markers associated with QTLs identified in each environment  
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Fig. 4. Manhatan plot of –Log10(P) from GWAS analysis in soybean using mixed linear model. 
a) Protein Rio Verde 2013-14. b) Protein Rio Verde 2014-15. c) Protein Sorriso 2014-15. d) Oil 
Cascavel 2013-14. e)  Oil Cascavel 2015-15. f) Oil Rio Verde 2013-14. g) Oil Rio Verde 2014-15. 

h) Oil Sorriso 2014-15. i) 100 grain weight Rio Verde 2014-15. j) 100 grain weight Rio Verde 
2014-15. Continuous horizontal line is the threshold for 1% probability (-Log10(P)=2). Dotted 

horizontal line, when present, is the threshold for 0.1% probability (-Log10(P)=3). 
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4. CONCLUSION 
 
SNP haplotypes identified in this work explained 
almost the third part of phenotypic variation in 
protein and oil content in soybean, and in 100 
seed weight. Due the GxE interaction, the SNP 
haplotypes associated with this traits are different 
in different environments. For breeding 
application of SNP haplotypes for this traits, the 
SNP discovery needs to be performed each year, 
in each environment.  A sample of less than 5% 
of the breeding population needs to be evaluated 
phenotypically and also genotyped with some 
thousands of SNP markers, for genomic 
association study. The markers identified in this 
association study can be used to select the      
rest of the population, without phenotypic 
evaluation.  
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