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Maintaining and monitoring low-voltage overhead power lines are of great

importance because such lines are the key link between the power system and

low-voltage power users. At present, few networks can be detected accurately

on intelligent edge identification devices because of the complex backgrounds

and limited characteristics in unmanned aerial vehicle images as well as the low

computing abilities of hardware. In order to give consideration to accuracy and

speed, a novel power line detection method was proposed, denoted by Gabor-

YOLONet, used for intelligent edge identification devices available to UAV.

Unlike existing methods, the proposed method uses the Gabor algorithm to

extract foreground of power lines from cluttered backgrounds automatically

and predict power lines and their auxiliary targets such as insulators in the

foreground scene. In addition, a new inference method was introduced, which

can summarize the average location and orientation of auxiliary targets by

clustering to verify the rationality of the predicted results for power lines. The

experiment results showed that the proposed method had the higher accuracy

and consumed less computing resources; compared with other methods, the

mAP of identification for power lines was 86.6% and the running time was only

25 ms, with excellent performance on intelligent edge devices.
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1 Introduction

A low-voltage distribution network is the link between the power system and low-

voltage power users. Low-voltage overhead power line inspection plays an essential role in

the daily maintenance of power transmission systems (Zhang et al., 2021). In addition, the

basic information, for example, the line direction and circuit topology of a low-voltage

distribution network, is seriously missing, which makes it difficult to apply almost any

modern information-based inspection method to low-voltage distribution networks (Gao

et al., 2020). Statistics show that a vast majority of power outage accidents and power-
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related public safety accidents encountered by power users occur

in the low-voltage distribution network (Lu et al., 2016).

Therefore, many studies have been carried out to improve the

informatization degree of a low-voltage distribution network and

ensure the reliability of power supply, among which the vision-

based unmanned aerial vehicle (UAV) inspection has long been

regarded as one of the essential work (Oktay et al., 2018a; Oktay

et al., 2018b; Kose and Oktay, 2020; Şahin et al., 2022).

Low-voltage distribution lines are divided into buried cables

and overhead lines, and our study involves low-voltage overhead

lines. The state-of-the-art methods used in power line detection

are divided into three directions:

1. Power line detection based on a laser point cloud. For

example, Cheng et al. (2014) used vehicle-borne LiDAR

data to extract power lines. This method generally uses a

laser to scan power lines, which is suitable for high-voltage

transmission circuits. However, it is not suitable for low-

voltage overhead lines because high-voltage transmission lines

have special transmission corridors while low-voltage

overhead lines do not. The complex background of low-

voltage overhead lines, especially other stray lines, will

cause serious occlusion and misjudgment of laser scanning.

In addition, the problems associated with low-voltage

overhead lines are prohibitively expensive to use with laser.

2. Power line detection based on binocular vision. For example,

Cheng et al. (2014) and Shuai et al. (2017) proposed a

binocular vision-based method for power lines extraction

and distance measurement. This type of methods can

obtain the distance information of power lines through

visual matching, but this does not improve the accuracy of

power lines, and the calculation amount of 3D convolution is

much larger than that of 2D convolution, which makes it

difficult to ensure the efficiency of power line extraction. In

addition, the error of binocular ranging is too large, especially

when the distance is greater than 10 m.

3. A single camera–based visible light power line identification

method. A number of studies based on RGB images have been

carried out (Jiang et al., 2017; Zhang et al., 2017). Power line

extraction was regarded as the issue of line edge extraction

(Zhang et al., 2022). After an edge detection algorithm was

adopted to obtain the edge graph, Hough transform was used

to extract line segments on the edge graph. Zhang et al. (2014)

took the direction of power lines as PK and used Hough

transform to extract power lines to group and fit power lines

fragments. Pouliot et al. (2015) used the LSD algorithm to

extract line features, pole and tower features, and associated

features of the lines and towers in aerial images as model input

to distinguish power lines from non-power lines. Dai et al.

(2022) proposed a CODNet network to extract features of

power lines from cluttered backgrounds automatically and

predict centers and orientations of power lines in the scene

simultaneously, as a guide for the automatic navigation of

UAVs. Zhang et al. (2021) proposed an ultra-lightweight and

ultra-fast abnormal target identification network for

transmission line, but it could not extract the power line.

Zhao et al. (2022) proposed a method combining line

detection and semantic segmentation for power line

extraction from unmanned aerial vehicle images; however,

this method was more complicated and did not have real-time

performance. Zhang et al. (2019) proposed a method with

convolutional features and structured constraints, and two

algorithms were used to extract feature fusion for feature

fusion, although such a method is also time consuming and

cannot be used for real-time UAV power line extraction. This

type of methods introduced deep learning models after 2018,

such as Fast-PLDN proposed by Zhu et al. (2022) and the

asemantic segmentation model for power line detection.

These methods perform pixel-level semantic segmentation

of power lines. In recent years, related research has focused on

the detection of ultra-high voltage transmission lines and

railway power lines, and there are few studies on the

identification of low-voltage overhead lines.

It can be seen that related research in recent years has focused

on the detection of ultra-high voltage transmission lines and

railway power lines, and there are few studies on the

identification of low-voltage overhead lines. Because of the

complex background of low-voltage overhead lines and the

lack of dedicated distribution channels, laser scanning and

binocular cameras are not suitable for low-voltage overhead

lines. Also, no scholars have proposed a low-voltage overhead

power line detection algorithm that can be directly mounted on

low-power computers, and there are few related studies.

Therefore, low-voltage power line detection from aerial images

remains a challenging problem.

To this end, a new power line detection method was

proposed to address the aforementioned challenges for UAV

navigations. In order to accurately capture the small and

inconspicuous overhead power lines in the low-voltage

distribution network with cluttered background, power lines

extraction suitable for real-time aerial photography by UAVs

was investigated, and a Gabor-YOLO algorithm based on the

contextual information was proposed in our study, including the

following four parts:

1. Aiming at the cluttered background of low-voltage

distribution network, an adaptive foreground segmentation

algorithm based on the Gabor operator was proposed,

employing Gabor features to detect edge and contour

information, filter out most of the meaningless background

noises, and provide reliable candidate regions for the next-

stage algorithm.

2. Aiming at the characteristics of narrow, long, slender, and

inconspicuous features of overhead lines, an improved YOLO

network (Zhang et al., 2014) model based on the attention
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mechanism was proposed, which was used to perform

accurate power lines identification and positioning and

provide contextual information for power lines in the

foreground area of the image.

3. In order to reduce the false positive of the algorithm, an

inference algorithm based on contextual information was

proposed which was used to infer and discriminate power

lines through the set knowledge template after performing

K-means clustering and IOU calculation according to the

power lines and contextual information, which improves the

overall reliability and practicability of the algorithm in this

study.

4. The proposed method takes accuracy and speed into account,

and it can run in real-time and be easily applied to intelligent

edge devices, such as Nvidia Jetson Xavier NX.

2 Related works

The algorithm in this study mainly involves the principle of

edge detection, Gabor transform, and residual convolution

neural network, which are described as follows:

2.1 Edge detection

The so-called edge refers to the collection of pixels with sharp

changes in the gray scale of surrounding pixels, which is the most

basic feature of an image (Chen et al., 2020). Edges exist between

the target, background, and region, so it is the most important

basis for image segmentation. The main tool of edge detection is

the edge detection template, which is used to subtract the gray

value of the right adjacent point from the gray value of the left

adjacent point as the gray value of the point. Common edge

detection templates include the Laplacian operator, Sobel

operator, and Gabor operator. The Gabor operator was used

in the study.

2.2 Gabor Transform

Gabor transform is a windowed Fourier transform, and the

Gabor function can extract relevant features in different scales

and directions in the frequency domain (Jiang et al., 2011). The

main features of Gabor transform include its ability to fully

highlight the characteristics of certain aspects of the problem

through transformation, localize the time (space) frequency

analysis, and gradually refine the signal (function) through

scaling and translation operations, with arbitrary details of the

signal, for solving the difficulty of Fourier transform. The main

disadvantages of Gabor transform include the basis function

unable to be an orthogonal system, and a non-orthogonal

redundant basis required to be used in a signal analysis or

numerical calculation, resulting in a relatively large amount of

calculation and storage.

2.3 Residual convolution neural network

A convolutional neural network is a kind of feedforward

neural network with a deep structure and convolution

computation. The parameter sharing of convolutional kernel

within the hidden layer and the sparsity of interlayer

connections enable a convolutional neural network to

calculate complex features with a small amount of

computation (Redmon et al., 2016). A residual convolutional

neural network is a convolutional neural network with residual

blocks proposed by Kaiming He. The residual convolutional

neural network is a necessary structure for deep neural

networks because it can greatly alleviate the problems of

gradient disappearance and explosion. The key structure of

the residual convolutional neural network is a skipping

connection structure. In the residual convolutional neural

network, assuming the residual block input is X, the output is

H(x) and the forward branch is F(x), then:

H(x) � F(x) + x, (1)

where F (x) represents the forward branch, and x represents the

skipped connection branch. It can be seen that even if the

gradient of the weight layer disappears, the marked x can still

be transferred back to the earlier layer, thus avoiding the

disappearance of the overall gradient.

2.4 R-CNN

R-CNN is the combination of region proposals and CNN. It

is a pioneering work that introduces CNN into the field of target

detection (Girshick et al., 2010). It has important epoch-making

significance and greatly improves the effect of target detection.

The R-CNN series of algorithms are in the order of their

development. It is divided into R-CNN, Fast RCNN, and

Faster RCNN in turn. The RCNN first scans the input image

with the selective search algorithm to extract candidate boxes,

then scales all candidate boxes to a fixed pixel size through

normalization, and then inputs them into the convolutional

neural network to unify the length of the feature vector. The

standard is then extracted, the feature vector in each candidate

region of the SVM binary classifier is provided according to the

target category to classify the corresponding number, and the
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target position information is obtained through regression to

complete the target detection. In the RCNN algorithm, the

extraction of features and the classification decision are

carried out in series, and the SVM classifier is used for

classification, which leads to the disadvantage of a large

amount of calculation. Girshick (2015) proposed Fast RCNN

on the basis of RCNN, which directly inputs the image into the

convolution, and after passing through the ROI pooling layer, the

generated region of interest is sent to the fully connected layer

and then classification of objects is done with the help of SoftMax

classifier. However, Faster RCNN (Ren et al., 2015) uses the

regional candidate network instead of the selective search

method and obtains the adjusted candidate box by setting

anchor boxes of different scales and combining with the

convolutional neural network. The network combines the

extraction of target feature information with the realization of

target classification, and end-to-end training is achieved for the

first time.

3 Methods and models

The Gabor-YOLO algorithm in this study is composed of an

adaptive foreground extraction module based on the Gabor

operator, an improved YOLO network based on attention

mechanism, and a reasoning module based on contextual

information. The overall framework of the Gabor-YOLO

algorithm is shown in Figure 1. The UAV image was divided

into the image input foreground extraction module, in which the

image was first preprocessed by gray scale and Gaussian filtering,

then improved after performing feature extraction with the

Gabor operator, and finally the foreground area was obtained

in the image and input to the next module. In the improved

YOLO network module, the power lines and auxiliary targets

were located and identified, and the results were input to the next

module. In the inference module, K-means clustering was

performed on the coordinates of all auxiliary targets, and after

the power distribution channel was obtained, and the IOU

calculation was performed with the power line, to obtain the

final power lines extraction results.

3.1 Foreground extraction algorithm

In the images of a low-voltage distribution network, there are

a large number of background pixels having a great impact on the

performance of the edge detection algorithm, so it is not

appropriate to directly use the conventional edge detection

FIGURE 1
Structure of the model.

Frontiers in Energy Research frontiersin.org04

Feng et al. 10.3389/fenrg.2022.960842

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2022.960842


method to extract power lines. However, the edge detection

operator has the advantages of simplicity and efficiency, so it

can be used to detect the edge of the image first and establish the

candidate pool of lines pixel points, which can not only improve

the accuracy of power lines extraction but also greatly reduce the

computation of the subsequent convolutional neural network.

In this study, an adaptive foreground extraction algorithm

was proposed based on edge detection, which was used to filter

out background interference and obtain the foreground rapidly.

The algorithm structure is shown in Figure 2.

The initial image collected by the UAV was an RGB color

model, and the gray scale processing was performed on the target

image to reduce the amount of data. The gray scale calculation

formula is as follows:

Gray(i, j) � 0.299 × R(i, j) + 0.578 × G(i, j) + 0.114 × B(i, j),
(2)

where (i, j)is the horizontal and vertical coordinates of pixels in

the image; Grayrepresents the gray value after gray processing;

Rrepresents the gray value of the red component; G represents

the gray value of green component; and Brepresents the gray

value of the blue component.

In the process of UAV shooting and transmission, there were

a lot of noises in the image, which weakened the details of the

image. In order to eliminate its influence on edge extraction as

much as possible, the image was processed by Gaussian filtering.

The calculation formula of Gaussian filtering is as follows:

C(x, y) � ∑c
v�−c

∑c
u�−c

I(x + u, y + v) 1

2πδ2
e−

u2+v2
2δ2 , (3)

where x,yis the horizontal and vertical coordinates of pixels in the

image; Cis half of the length/width of the filtering template; σis the

standard deviation; C(x, y) is the result of Gaussian filtering; and

x, yare the horizontal and vertical coordinates of pixels in an image.

The core principle of the Gabor operator is the Gabor

transform. In this study, the imaginary part of a two-

dimensional Gabor function was used for feature extraction,

with the expression of the two-dimensional Gabor function

shown in Formula (Eq. 4), as follows:

gλ(x, y) � 1

2πλ2
exp(−(x2 + y2)

2λ2
), (4)

where θis the direction angle; λis the width parameter of the

Gaussian function; f is the center frequency of the filter

bandwidth, and x, yare the horizontal and vertical coordinates

of pixels in an image.

Considering that Gabor filter is a complex function, its

imaginary part is the following:

Iφ(x, y) � gλ(x, y) sin(2πf(x cos θ + y sin θ)). (5)

In actual operation, the input is a discrete value, so

discretization is performed on equation (6). Assume D(x, y)
is the digital image of matrix m × n, so for the field window of

size W × W(W � 2k + 1) the imaginary part of discretized

convolution of D(x, y) with Gφ(x, y) is as follows:

GI(x, y∣∣∣∣φ) � ∑κ
n�−k

∑k
m�−k

D(x + n, y +m) Iφ(n,m). (6)

The spectral energy at any point (x, y) in the window

W × W is defined as follows:

Eφ(x, y) � (eφi,j)P×Q � 1
W2

(G2
R(x, y∣∣∣∣φ) + G2

I(x, y∣∣∣∣φ).) (7)

In this study, the spectral energy function Eφ(x,y) was used as

the response of input image to theGabor filter. A total of eight groups

of Gabor filters were designed according to different wavelengths and

bandwidths. Each Gabor filter only responded to its Eφ(x,y)
corresponding frequency and bandwidths while the energy of

other textures was suppressed, so as to extract and analyze texture

features. Then the edge detection images of multiple groups of Gabor

filters were fused and the foreground segmentation was performed.

3.2 Gabor-YOLONet: Improved YOLO
network based on gabor operator

Most of the backgrounds have been filtered out in the image

of the foreground region given by the Gabor algorithm. On this

FIGURE 2
Obtaining foreground areas from images.
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basis, the improved YOLO network in this section can identify

power lines and auxiliary objects, for example, insulators and

C-clamps. Combined with the fact that the power lines itself

involves less high-order semantic features and the speed

requirement of power lines extraction, the lightweight

backbone was adopted in the study. At the same time, for

improving the adaptability of lightweight backbone to low-

voltage overhead lines, on the one hand, a convolutional block

attentionmodule was added that combines channel attention and

spatial attention, and the feature fusion branch was adjusted to

identify. The overall network structure of the algorithm is shown

in Figure 3.

A convolution block attention model combining channel

attention and spatial attention was added to backbone residual

blocks, to further highlight the prominent feature channels in

feature graphs and suppress background feature channels.

In channel attention mechanism, global average pooling and

maximum pooling were adopted to extract channel weight

information, for avoiding information omission caused by

only using average pooling. The calculation formula of

channel attention mechanism is shown in formula (Eq. 8):

MC(F) � σ(MLP(AvgPool(F)) +MLP(MaxPool(F))),
� σ(W1(W0(Fc

avg)) +W1(W0(F c
max ))), (8)

where σ(·)represents sigmoid function; MLPrepresents the

shared network in the module, which consists of the hidden

layer andmultilayer perceptron. The activation size of the hidden

layer is set to R
C/

r×1×1. In the multilayer perceptron, its

W0 andW1 are set to R
C/

r×C and W1 ∈ RC×C

/

rrespectively. R is

set to 16. AvgPool(·)and MaxPool(·) represent the module

performing average pooling and maximum pooling of feature

map spatial information, respectively. Fc
avgand F c

max represent

the global average pooling and maximum average pooling

operations of channel attention mechanism, respectively.

Considering that the channel attention mechanism cannot

obtain the image position information well, the spatial attention

mechanism was introduced to pay attention to the spatial region,

and the corresponding feature images of each channel were

calculated and screened. The calculation formula of spatial

attention mechanism is shown in Eq. 9:

MS(F) � σ(f7×7([AvgPool(F);MaxPool(F)]))
� σ(f7×7(Fc

avg;F
c
max )), (9)

where f7×7denotes convolution calculation with a size of 7 × 7;

Fc
avgand F c

max represent global average pooling and maximum

average pooling operations of spatial attention mechanism,

respectively.

FIGURE 3
Improved YOLO Network based on the Gabor operator.
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Aiming at the long and narrow linear structure of power lines

in the image, a double feature layer extraction structure and a

pyramid multi-scale fusion module are adopted. High-level

semantic information can help to accurately detect generalized

objects such as power distribution corridors, whereas low-level

geometric details can accurately detect small objects such as

power lines. Therefore, in the convolutional neural network, it is

necessary to fuse features of different scales to achieve the best

detection effect. The feature fusionmodel in this study is different

from the conventional model. The feature map output by the first

residual module is used as a low-order geometric feature map,

and the feature map output by the third residual module is used

as a high-order semantic feature map.

An inference module was proposed, with the flowchart

shown in Figure 4. The inference module was applied to

screen the power lines after detection of power lines and

auxiliary objects. Long and narrow linear structures in the

images are very common in actual scenes, such as ropes and

miscellaneous lines (Zhang et al., 2014). The image features are

very similar to power lines, which is easy to cause false detection.

It is generally believed that only the power lines in the

distribution corridor area are overhead power lines, and

insulators, C-clamps and even transformers are equipment

specific to the distribution corridor. Therefore, these unique

devices are detected together and used to assist extraction of

power lines.

FIGURE 4
Inference module.

FIGURE 5
Images of low-voltage distribution network transmission lines.

TABLE 1 Dataset information.

Total amount Power lines Insulators C-type wire
clips

Poles Transformers

Number of images 1,200 1,176 776 222 1,072 444

Number of labels 12,432 3,304 6,040 856 1788 444
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The process of the inference module are as follows:

First, the center point is obtained of all auxiliary targets

according to the prediction box given by the improved YOLO

network.

Second, the K-means clustering algorithm is performed on

the center point coordinates of all auxiliary objects, and the

auxiliary objects are divided into K clusters, and the relative

distance of the targets in the cluster is as small as possible, and the

distance between the two clusters is as large as possible. If the

cluster is divided into (C1, C2, . . . , Cn), the purpose of clustering
algorithm is to minimize the square error E, which is to minimize

Eq. 10:

E � ∑k
i�1

∑
x ∈ Ci

���������x − 1

|Ci| ∑
x ∈ Ci

x

���������
2

2

. (10)

In the study, each cluster is the tower area, which is the stress

point of the power line, and the area in the middle of the two

towers is the distribution corridor. After determining the power

distribution corridor area, the Intersections over Union (IOU) of

power lines and power distribution corridor area were calculated,

to exclude the power lines outside the power distribution

corridor area. The IOUs of power lines and power

distribution channel were calculated, to exclude the power

lines outside the power distribution channel. If there is only

one single clustering result, IOU calculation can be carried out

based on the tower area and power lines, to complete the

automatic power lines extraction of the algorithm. Suppose

the area of the tower is S1and the area of the power line is S2, then

IOU � S1 ∩ S2
S1 ∪ S2

. (11)

The specific values of S1and S2 are calculated according to the

coordinates of the tower and the power line in the images.

4 Experiments and results

In order to verify the advantages and effectiveness of the

algorithm in our study, actual aerial images of a real low-voltage

overhead lines inWuhan, Hubei, China were used to conduct the

simulation verification experiment, with the following software

and hardware platforms: Intel Core i5-10400F@2.90GHz×;

6 CPUs, NVIDIA GeForce RTX 2060, Ubuntu 16.04LTS

operating system, Pytorch deep learning framework, and

Nvidia Jetson Xavier NX intelligent edge device.

4.1 Dataset

The experimental data sets used in this study were collected

by UAV from the actual low-voltage distribution network of a

village inWuhan, Hubei, China. As shown in Figure 5, compared

with high-voltage transmission lines, overhead distribution lines

of low-voltage distribution network travel in streets and

residential buildings, with very serious background

interference and shielding. These are typical small targets with

very weak features of lines and insulators.

FIGURE 6
Loss and mAP Curves.

TABLE 2 MAP value of power lines and auxiliary target.

Category mAP (%)

Power lines 93.4

Insulators 88.5

C-type wire clips 98.0

Poles 89.7

Transformers 94.0

Overall 93.4
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Labeling tools was used to label images of low-voltage

overhead distribution lines, including power lines, insulators,

C-clamp, power towers and transformers. A total of

1,200 images were labeled. In order to increase the diversity

of data samples and improve the generalization ability of

network model, random rotation and pruning were carried

out on the collected data sets, to expand the sample data to

2,400 pieces. 2000 images were selected as training sets and the

remaining 400 images were used as test sets. The information

on the dataset is shown in Table 1. According to the table, there

are a total of 1,176 images including power lines, in which a

total of 3,304 power lines are labeled.

4.2 Model training

In the process of model training, the image was input into the

foreground extraction module to obtain the foreground image,

and the image size was uniformly adjusted to 608 × 608. Adam

optimizer was adopted for stochastic gradient descent, the initial

FIGURE 7
Results of each step in our model.
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learning rate was set to 0.01 and adopted cosine annealing

learning rate. In order to prevent over-fitting of the model,

the weight attenuation regularization was set to 0.0005, the

batch size to 64, and the iteration epoch to 300.

To achieve better training effect, transfer learning strategy

and staged training method were adopted. First, after fully pre-

training the convolutional neural network, connect it with the

foreground extraction module, freeze the parameters of the

foreground extraction module and backbone, and perform

50 rounds of model iterations, then unfreeze the parameters

of the foreground extraction module and backbone, and

iteratively train together until 300 rounds to get the optimal

model weights.

The loss convergence curve and mean Average Precision

(mAP) curve of the network model during training are shown in

Figure 6. The abscissa represents the iterations of the network

model, and the ordinate represents the loss value or mAP value in

the training process. It can be seen from Figure (a) that the initial

loss value of the model in this study was 29.93 (point A in the

figure), decreased to about 6.10 (point B in the figure) in the first

50 rounds of iteration, and the loss value finally decreased to

about 4.13 (point C in the figure). It can be seen that the detection

model proposed in this study has achieved good training effect.

As can be seen from Figure (b), the mAP value of the algorithm in

this study has risen to 0.6 (point A in the figure) in the first

50 rounds, and finally stabilized at around 0.9 (point B in the

figure), achieving high recognition accuracy.

4.3 Model results

The mAP values of power lines and auxiliary targets of the

proposed algorithm are shown in Table 2. As seen from Table 2,

the average accuracy mAP of the proposed algorithm for power

lines can reach 93.4%, the average accuracy of auxiliary objects

such as insulators is satisfactory, and the overall average accuracy

is 86.6%, indicating that the proposed algorithm has the

advantage of high accuracy. The output results of each stage

of the algorithm in this study are shown in Figure 7, in which (a)

is the original image taken by UAV, (b) is pretreated after image

gray scale and Gaussian filter, (c) is the characteristic figure

extracted with Gabor operator, (d) is the fused character figure of

different Gabor features, (e) is the foreground figure, and (f) is the

final results of the model. The final results are shown in Table 3.

As shown in Table 3, foreground image accounts for 27.4% of

the original image, which greatly contributes to promoting the

accuracy and the speed of the whole algorithm. The improved

neural network model accurately completed the power lines and

auxiliary objects’ recognition, the inference module has

succeeded in selecting the true low-voltage distribution

overhead line.

To verify the effectiveness of the method proposed in this

study, ablation experiments were performed for recognition of

power lines. A module of the algorithm was removed in turn, the

experimental results were compared, and the overall mAP value

comparison results were obtained, as shown in Table 4. It can be

seen from Table 4 that the mAP of the complete algorithm is

93.4%. When the foreground extraction module is removed, the

algorithm fails to remove a large amount of background noises,

and the mAP is reduced to 77.1%. After replacing the improved

backbone into the common DSPDarknet, the average accuracy is

reduced to 78.8%, which verifies the effectiveness of the improved

schemes such as attention mechanism and feature extraction

branch proposed in this study for backbone. When the inference

module is removed, the false positives of the algorithm increase

significantly, and the mAP decreases to 89.8%.

4.4 Comparison and analysis

To further verify the advantages of our method, the method

was compared with three representative object detection

TABLE 3 Model’s output.

Output variable Output value

Image size 1920 × 1,080

Foreground area Xmin = 823, Xmax = 1,351, Ymin = 2, Ymax = 1,351

Transmission_corridor Xmin = 823, Xmax = 1,140, Ymin = 8, Ymax = 948

Power_line_1 Xmin = 843, Xmax = 869, Ymin = 5, Ymax = 840

Power_line_2 Xmin = 914, Xmax = 941, Ymin = 10, Ymax = 749

Power_line_3 Xmin = 1,052, Xmax = 1,091, Ymin = 35,Ymax = 731

Power_line_4 Xmin = 937, Xmax = 1,037, Ymin = 36, Ymax = 672

Auxiliary_1 (insulator) Xmin = 912, Xmax = 938, Ymin = 860, Ymax = 877

Auxiliary_10 (tower) Xmin = 961,Xmax = 1,028,Ymin = 687,Ymax = 1,026

TABLE 4 Results of ablation experiment.

Foreground extraction Improved backbone Inference module CIOU mAP (%)

√ √ √ √ 93.4

√ √ √ 77.1

√ √ √ 78.8

√ √ √ 89.8

√ √ √ 91.0
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methods, namely Faster RCNN, YOLOv3, and YOLOV3-tiny, in

terms of accuracy and recognition speed for power lines

recognition. The same data samples and parameters for

training were used for all the object detection methods, and

the detection results are shown in Table 5.

According to the comparison results in Table 5, our method

has the highest mAP value (93.4%). Thanks to the rapid-speed

of Gabor transform, the recognition speed of our method can

FIGURE 8
Results of various algorithms.

TABLE 5 Results of contract experiment.

Method mAP (%) Time/s

Faster RCNN 87.5 1.088

YOLOv3 75.6 0.107

YOLOv3-tiny 74.1 0.0162

Our method 86.6 0.025
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reach 40 frames/s, only slower than that of YOLOV3-TINY,

which can fully guarantee the real-time performance of the

algorithm and is suitable for UAV. Yolov3-tiny has significantly

higher detection speed than others, but its mAP value is the

lowest, leading to a large number of missed detections,

especially for power lines and insulators. Compared with

YOLOV3-TINY, YOLOV3’s recognition speed is greatly

reduced, but the improvement of mAP value is limited,

which also confirms the view in this study that power line

extraction is not sensitive to higher-order semantic features.

Faster RCNN is a two-stage recognition algorithm, and its mAP

value is significantly higher than YOLOV3 algorithm, but its

detection speed is far slower than other algorithms, so it is

obviously not suitable for the UAV.

The comparison is shown in Figure 8. Our method can

accurately identify the power distribution corridor and extract

the power lines in the power distribution corridor, with the

highest detection accuracy. The YOLOv3-tiny algorithm fails to

detect a large number of power lines and insulators, and also

misidentifies stray lines and pipes outside the power distribution

corridor as power lines. Compared with YOLOV3-tiny,

YOLOv3 algorithm adds rich high-order semantic features,

but false detections and missed detections also exist. Some

power lines and insulators are not detected, but stray lines

outside the distribution channel and white road dividing lines

are mistakenly identified as power lines.

4.5 Running on low-power computers

In order to verify the lightweight and practicality of the

method in this paper, it is necessary to apply Gabor-YOLONet to

a low-power computer. Therefore, we made a new development

and successfully applied Gabor-YOLONet to low-power

terminals Nvidia Jetson Xavier NX and Rockchip RK3399pro.

We adopt a multi-rotor drone, which forms a drone system with

the drone nest. The effect of the proposed algorithm running on

Nvidia Jetson Xavier NX and RockchipRK3399pro. On Nvidia

Jetson Xavier NX, the frame used is TensorRT, the running speed

is 29.4, and the accuracy of power line recognition is 82.3%. The

average power is 9.8w.On Rockchip RK3399pro, the frame used

is RKNN, the running speed is 19.1, the accuracy of power line

recognition is 79.6%, and the average power of the device is 4.3. It

is worth noting that Our algorithm is no longer based on

PyTorch in the low-power computers. The program running

on Nvidia Jetson Xavier NX is accelerated by TensorRT, and the

program running on Rockchip RK3399pro is accelerated by

RKNN. Because the NPU of RK3399PRO does not support

Pytorch, we have carried out a series of work on the neural

network model of this paper, such as model acceleration and

quantization, operator fusion, operator replacement and model

transformation. In summary, the proposed method is hardware

friendly It can run in real time on low-power computers and has

strong practicability.

5 Conclusion

In order to accurately capture the small and inconspicuous

overhead power lines in the low-voltage distribution network

with cluttered background, a Gabor-YOLO algorithm based on

contextual information was proposed in this study. The

improved Gabor operator was used to filter out the

environmental noise for foreground segmentation and the

convolution block attention model combining channel

attention and spatial attention was used to improve the

YOLO network to make it more suitable for power lines

recognition and an inference module based on contextual

information was proposed to determine the power line. A

method for accurate and real-time detection of overhead

lines of low-voltage distribution network has already been

realized.

The experiment was carried out on the overhead lines of a

low-voltage distribution network in Wuhan, Hubei, and it has

proved that the algorithm proposed in this study can still take

speed and accuracy into account under harsh conditions such as

complex background environment.

In the future studies, the proposed algorithm can be fused

with real-time geographic information and transplanted into

edge devices carried by UAVs to realize all aspect automatic

recognition of route direction based on UAV aerial

photography, effectively improving the basic data of low-

voltage distribution network and reducing the burden of

operators.
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