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ABSTRACT 
 
Oysters are important mariculture species worldwide. Because of their filter-feeding behaviors, 
oysters contain complicated microbial populations, and these varying microbial populations can 
provide a correlation to increased oyster mortalities in the oyster farming industry as well as food 
outbreaks associated with public health surveillance. This review summarizes the significant 
outcomes in oyster microbiota research, including the identified oyster-associated bacterial taxa and 
comparison of different oyster tissues for microbial studies. In addition, environmental factors that 
could potentially affect the dynamics of oyster microbiota are discussed. Recent approaches 
developed to study oyster microbiota as well as their limitations are also highlighted in this review. 
Finally, future directions in oyster microbiota research have been suggested. 
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1. INTRODUCTION  
 
Oyster farming is an important component of 
global mariculture economy. Oyster reefs are 
also a main structural component of many 
estuaries, providing not only a reef habitat for 
marine ecosystems, but also construction 
materials used for human civilizations [1]. 
 
Many oyster species have been studied in 
aquaculture and food research due to their 
important relationship to public health worldwide. 
The most common types of oysters which have 
been well investigated include the Pacific oyster 
(Crassostrea gigas), Eastern oyster (Crassostrea 
virginica), Sydney rock oyster (Saccostrea 
glomerata), European flat oyster (Ostrea edulis), 
Portuguese oyster (Crassostrea angulata), 
Chilean oyster (Tiostrea chilensis), Indo-Pacific 
oyster (Chama pacifica and Chama savignyi), 
Slipper oyster(Crassostrea iredalei), Cortez 
oyster (Crassostrea corteziensis), and 
Kumamoto Oyster (Crassostrea sikamea) [2-10]. 
The globally distributed C. gigas is the most 
popular species in oyster aquaculture, primarily 
due to its relatively faster growth rate than any 
other oyster species (Spp.) [11].  
 
One of the major obstacles in oyster aquaculture, 
which significantly influences the number of live 
oysters, are the factors that lead to the mass 
summer mortality of C. gigas. A variety of 
countries around the globe, such as Japan 
[12,13], United States [14-16], France [17], 
Ireland [18], and Italy [19], have reported a 
declining population of this species of oyster. 
Mortality of C. gigas population is associated with 
multiple factors including variable temperature 
[16,18,20], dissolved oxygen levels [21], 
reproduction stress [18], phytoplankton blooms 
[16], as well as viral [16,19,20,22-24] and 
bacterial infections [19,23,24].   
 
Due to benthic feeding habits and filtration 
system of oysters, multiple coexistent microbial 
species can invade and accumulate within their 
tissues [6,25]. There is a possible link that the 
accumulation of these microbial species may 
play an important role in increasing the rate of 
oyster morality. For instance, studies have found 
that several Vibrio spp. related to oyster mortality 
outbreaks were detected not only in oysters in a 
state of moribund, but also in healthy oysters 
[24,26]. Particularly, in France, Chlamydia-like 
organisms related to Chlamydia psittaci (which 
were detected and isolated from C. gigas) were 
found to be the major cause of tissue lesions and 
mortalities in C. gigas [27]. In addition, there 

have been reports that Chlamydia and 
Mycoplasma bacterial species were responsible 
for the damage of crucial structures and the 
causation of diseases in oysters [26].  
 
Bacteria that can cause human illness were also 
discovered and identified in various species of 
oysters. Some Vibrio spp., especially Vibrio 
vulnificus and Vibrio parahaemolyticus, which are 
well-known pathogens in the causation of human 
illness, were found in oysters and contributed to 
disease outbreaks in the United States (U.S.) 
[28-30]. Other bacterial strains of Salmonella [31, 
32] and E. coli have been detected in oysters in a 
variety of regions worldwide [33]. Moreover, 
mercury-resistant bacteria could enhance the 
intake of mercury (Hg) in oyster species such as 
C. virginica [34]. Other heavy metals, such as 
zinc (Zn), copper (Cu), cadmium (Cd) and lead 
(Pb) have also been detected in oysters [4].  
 
Although the presence of bacteria and heavy 
metals found in oyster are associated with food 
poisoning and increasing rates of oyster 
mortality, investigations on the use of probiotic 
strains has revealed hope. A study by Karim et 
al. showed that implementation of probiotic 
bacterial strains gave the potential to reduce the 
rate of mortality in larvae and juvenile oysters 
[35]. Thus, focusing attention towards examining 
the microbiota in the different life stage of oysters 
(such as larvae, juvenile and adult oysters) could 
help to elucidate the interaction between 
pathogenic and probiotic bacterial strains, which 
could eventually provide a benefit to the oyster 
industry and public health authorities. 
 

2. MAJOR BACTERIAL TAXA IN OYSTER 
MICROBIOTA 

 
Several major bacterial phyla have been 
identified from the microbiota in several different 
oyster species. Among all the oyster microbiota, 
Proteobacteria are the most abundant, followed 
by Firmicutes and Bacteroidetes (Table 1). 
Several classes of the Proteobacteria phylum 
have been identified, including Alpha-, Beta-, 
Gamma-, and Epsilonproteobacteria. 
Alphaproteobacteria were found to be dominant 
in some oyster species. The paramyxean 
parasite Marteiliasy dneyi infected Sydney rock 
oysters S. glomerata were dominated by 
Rickettsiales-like Alphaproteobacteria spp. [36]. 
Disease-affected juvenile oysters C. virginica 
were dominated by Roseobacter spp., while non-
infected oysters were mainly colonized by                    
a Stappiastellulata-like strain, which both             
belong to the Alphaproteobacteria class [37]. 
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Betaproteobacteria Burkholderia cepacia was the 
most abundant bacterial specie in C. gigas and 
C. corteziensis [38]. B. cepacia colonizes the 
post-larval phase of oysters and stably maintains 
its presence within tissues regardless of growing 
site changes. The Gammaproteobacteria Vibrio 
and Pseudomonas were the commonly found 
genera in several oyster species by in vitro 
culture [39-42]. In C. gigas residing in Mexico, 
Gammaproteobacteria were found to be 
abundant in their gill tissue, gonads and digestive 
glands [43]. The use of 16S rDNA cloning 
method revealed that Gammaproteobacteria and 
the order of Oceanospirillales dominated in gill 
tissues of Indo-Pacific oyster C. pacifica and C. 
savignyi [5]. The Gammaproteobacteria 
Shewanella putrifaciens were found to be the 
dominant bacterial species in oyster C. iredalei in 
Malaysia using culturing methods [4]. 
Epsilonproteobacteria Arcobacter-related strains 
were the most abundant bacterial species found 
in the T. chilensis homogenate by the 16S rDNA 
cloning method [3]. Arcobacter spp. were also 
found in moribund C. gigas [10]. In addition to 
oysters, Proteobacteria were also found to be 
dominant among the microbiota of other shellfish 
species such as mussels [9,30], indicating that 
Proteobacteria could be one of the most common 
residents in shellfish microbiota. Thus, it is vital 
to reveal the composition and potential functions 
of Proteobacteria in oyster microbiota, which 
could be utilized to understand the oyster-related 
outbreaks.  
 
Bacteroidetes and Firmicutes were also found to 
be the most common phyla besides 
Proteobacteria in the microbiota of many oyster 
species. Other phyla including Actinobacteria, 
Cyanobacteria, Spirocheates and Chlamydia 
were highly abundant in multiple species such as 
C. gigas, C.corteziensis, and C.sikamea, but not 
so much in other oyster species (Table 1). Due to 
the abundance of microbial phyla found in oyster 
microbiota, future studies should also focus on 
revealing the potential functions of these phyla in 
different oyster tissues as well as species. 
 
The surrounding environment could influence the 
abundant taxa even within the same oyster 
specie. A study analyzing the stomach and gut 
microbiomes of C. virginica from coastal 
Louisiana, U.S. revealed that Mollicutes (mostly 
related to Mycoplasma) were the major gut 
microbiota in C. virginica in Barataria Bay, 
whereas Planctomycetes were the dominating 
microbiota found in C. virginica in Lake Caillou 
[6]. This study indicated that environment 

variables (such as temperature salinity, 
phytoplankton and bacterioplankton regimes) 
could be a potential factor in the determination of 
microbial species found in Mollusks such as 
oysters. 
 
3. PUTATIVE CORE MICROBIOTA 
 
Microbiota plays a critical role in inhibiting 
pathogen colonization and in the maintenance of 
a homeostatic state in oysters. Identification of 
core microbiota in oysters remains a challenge 
nowadays due to multiple factors such as 
different growth phases and conditions of 
oysters. Bacterial species in oysters can be 
divided into two major categories: Core 
(autochthonous) bacteria and transient 
(allochthonous) bacteria. Core microbiota contain 
bacteria that are vital to food digestion and 
pathogen defense [42,44]. Transient microbes 
are generally influenced by the water column in 
the environment, thus, total bacterial diversity in 
oysters could be overestimated because of the 
existence of transient microbes [38]. One way to 
efficiently identify the microbiota composition is 
oyster depuration, which could possibly reduce 
the amount of transient bacteria in oyster 
microbiota [9,38]. However, transient bacteria 
has the potential to turn into residential 
microbiota during oyster larval development, 
which makes it difficult to interpret the host-
bacterial symbiotic relationship [9]. Core 
microbiota could be estimated by identifying 
shared microbial taxa among different microbiota 
samples [6,45]. However, elucidating core oyster 
microbiota would require establishing a 
commonly accepted standard for defining core 
operational taxonomic units (OTUs) and 
collaborating with different oyster research 
groups to obtain meaningful data to use. 
Establishment and maintenance of an oyster 
microbiota database would an additional 
necessary consideration to further categorize 
oyster-related microbial species. 
 
4. POTENTIAL FUNCTIONS OF OYSTER 

MICROBIOTA 
 
The understood of functional contributions of 
oyster microbial populations in oyster growth and 
development remains limited due to the 
complexity of microbiota in oysters. Studies have 
shown that oyster microbiota contain bacteria 
have functions in assisting their hosts for food 
digestion. Certain oyster gut bacterial species 
belonging to Proteobacteria phylum can degrade 
cellulose and agar from phytoplankton; Other 
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Proteobacteria species have the ability to fix 
nitrogen in bivalves [9,46], promoting the food 
digestion by host oysters. In addition, some 
marine Gammaproteobacteria such as 
Pseudoalteromonas spp. can aid in the 
degradation of algae, which is an important food 
resource for oysters [47,48]. With similar 
functions to Pseudoalteromonas spp., some 
other bacteria in the marine environment such as 
Bacteroidetes are capable of assisting in the 
degradation of algae cell wall components [9,49]. 
In addition to their supportive role in oysters 
nutritional intake and digestion, oyster microbiota 
could also provide protection against pathogenic 
bacteria. For example, multiple studies have 
showed that Betaproteobacteria cepacia could 
possibly inhibit pathogenic Vibrio alginolyticus 
and Vibrio harveyi in oysters [9,50]. With the 
development of new analytical techniques in 
microbial studies, further insight into the 
functionality of the oyster microbiota could be 
elucidated. Study of the microbial functions in 
other types of shellfish could also be useful to 
understand the functions of similar microbes in 
oysters. 
 

5. OYSTER MICROBIOTA FROM 
DIFFERENT OYSTER TISSUES  

 
Due to their filter-feeding behavior and semi-
open circulatory system, oysters could contain 
microbes that take up residence in many different 
tissue types. Oyster microbiota have been 
analyzed from several types of tissue samples, 
including gill, stomach, intestine, hemolymph, 
mantle fluid and whole oyster homogenate (listed 
in Table 1). 
 

Oyster gills can not only aid in respiration, but 
also have important functions in feeding and 
reproduction [51]. Due to its functions in 
respiration and feeding, the gill is one of the 
major organs in oysters that contains diverse 
microbial species [43,44]. Furthermore, gill 
microbiota could be different from those resident 
microbiota found in other oyster tissues [5]. Due 
to the relatively large surface area available to 
the surrounding seawater, gill tissue is a viable 
choice of tissue for the surveillance of pathogenic 
organisms found in oysters [44,52]. The studies 
of gill microbiota have been extensively 
investigated, and the comparisons of major 
bacterial phyla identified from different oyster 
microbiota studies are summarized in Table 1. 
However, due to the presence of a large amount 
of host DNA in the microbial DNA isolated from 
oyster gill tissues, using a 16S rDNA 
metagenomics approach would be necessary to 

detect microbial diversity. Moreover, expertizing 
in the dissection of oyster gills and isolation of 
microbial DNA requires professional and 
extensive training, which limits the use of oyster 
gills in oyster microbiota studies. 
 
In addition to oyster gills, gastrointestinal tissues 
(such as stomach, intestine and digestive 
diverticula) are common residential tissues for 
microbes, and these tissues are commonly used 
to study oyster microbiota as well (Table 1). Due 
to the filter-feeding behavior of oysters, their 
gastrointestinal tissues can contain various 
transient bacteria and other opportunistic 
pathogens from their food sources in addition to 
their core microbiota. Furthermore, King et al. 
showed that C. virginica digestive gland 
microbiota were diverse and largely unknown [6]. 
Oyster gastrointestinal tissues could be probed 
to compare the oyster microbiota from different 
growing geographical regions across species, as 
well as microbiome changes caused by seasonal 
nutrient fluctuations. In addition, oyster 
gastrointestinal tissues could also be 
investigated to compare microbiota differences 
between oyster tissues and surrounding water, 
which could be useful for understanding bacteria 
colonization in oyster digestive systems. 
Studying the potential functions of microbes in 
oyster gastrointestinal tissues could also provide 
additional information on their roles in food 
digestion and nutrition absorption.   
 
In addition to gills and gastrointestinal tissues, 
oyster hemolymph and mantle fluid also contains 
diverse microbiota (Table 1). Mantle fluid 
immerses the gills and other tissues within oyster 
shells [53]. Due to its rich microbial content 
[10,54,55] and relatively easy to be accessed, 
oyster hemolymph has been used to study host 
immune response to microbial pathogens [56]. 
Diverse populations of Vibrio spp. have been 
detected from C. gigas hemolymph using 
culturing methods [56]. Comparing findings from 
hemolymph to other solid tissues, oyster 
hemolymph could be the most promising 
component to study oyster microbiota and 
possibly contribute to the development of some 
innovative detection methods. Hemolymph from 
the oyster semi-open circulatory system can be 
easily extracted from the sinus of the adductor 
muscle via syringe needles [54,56,57], thus, 
sampling hemolymph could avoid shucking and 
dissecting oysters, which can provide a 
continuous assessment of microbiota from the 
same oysters during the course of study or 
research [10]. 
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Table 1. Comparison of major bacterial phyla identified from different oyster microbiota studies in reverse chronological order 
 
Oyster 
species 

Tissue types High abundance 
phyla 

Low abundance phyla Location Identification methods  References 

C. gigas 
 

Hemolymph Proteobacteria, 
Bacteroidetes 

Actinobacteria, 
Cyanobacteria, Firmicutes, 
Fusobacteria, Spirochaetes, 
Tenericutes 

Germany Pyrosequencing V3–V5 
regions of the 16S rDNA 
gene using the GS-FLX 
Sequencer 

[10] 

C. gigas 
 
C. corteziensis 
 
C. sikamea 

Depurated post-larvae 
homogenate 
 
Depurated adult 
oyster gastrointestinal 
tissues 

Proteobacteria, 
Bacteroidetes, 
Actinobacteria, 
Firmicutes, and 
Chlamydia 

Fusobacteria, Tenericutes, 
Acidobacteria, Chlorobi, 
Deinococcus-Thermus, 
Spirochaetes, Thermotogae, 
and Verrucomicrobia 

Mexico Pyrosequencing V3–V5 
regions of the 16S rDNA 
gene using the FLX-Junior 
Sequencer 

[9] 
 

C. virginica Tissues, gut and 
mantle fluid 

Cyanobacteria - Gulf of 
Mexico, 
Florida, USA 

Roche 454 FLX 
pyrosequencing the V4 
region of the 16S rDNA gene  

[25] 
 

C. gigas 
 
S. glomerata 

Homogenate Proteobacteria, 
Tenericutes, 
Spirochaetes 

- South 
Australia, 
Australia 

Pyrosequencing the V1-V3 
region of the 16S rDNA gene 

[8] 
 

C. gigas Gill, digestive glands, 
and residual tissues 
(mantle and adductor 
muscle) 

Proteobacteria, 
Bacteroidetes, 
Verrucomicrobia,  

Actinobacteria, Fusobacteria, 
Acidobacteria, Firmicutes,  
Nitrospirae 

China 16S rDNA PCR amplification 
and DGGE analysis 

[44] 

C. gigas Gill tissue Proteobacteria, 
Bacteroidetes, 
Planctomycetes, 
Firmicutes, 
Tenericutes 

Actinobacteria, 
Cyanobacteria, Fusobacteria, 
Spirochaetes 

Germany Roche 454 
PyrosequencingV3 and V4 
regions of 16S rDNA 

[52] 

C. gigas 
 

Homogenate Proteobacteria, 
Fusobacteria, 
Bacteroidetes 

Spirochaetes, 
Cyanobacteria, Tenericutes, 
Planctomycetes, 
Verrucomicrobia, Firmicutes 

Tasmania, 
Australia 

16S rDNA cloning [60] 

C. virginica Stomach and gut 
(intestine) tissue 

Mollicutes, 
Planctomyctes, 

Actinobacteria, 
Bacteroidetes, Deinococcus-

Louisiana, 
USA 

Roche 454Pyrosequencing 
of 16S rDNA 

[6] 
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Oyster 
species 

Tissue types High abundance 
phyla 

Low abundance phyla Location Identification methods  References 

Chloroflexi, 
Firmicutes, 
Proteobacteria, 
Verrucomicrobia,  

Thermus, Fusobacteria, 
Spirochaete, Crenarchaea, 
Euryarchaea 

C. gigas 
C. corteziensis 

Depurated postlarvae 
homogenate 
Depurated juvenile 
and adult oyster 
gastrointestinal 
tissues 

Proteobacteria, 
Firmicutes 

Spirochaetes, Actinobacteria Mexico 
 
 

16S rDNA PCR amplification 
and TGGE analysis 

[38] 
 

C. pacifica 
C. savignyi 

Gill tissue Proteobacteria - Israel 16S rDNA cloning [5] 
 

S. glomerata Adult oyster digestive 
glands 

Firmicutes, 
Proteobacteria, 
Cyanobacteria, 
Spirocheates 

Actinobacteria, Chloroflexi, 
Chlorophyta 

Queensland, 
Australia 

16S rDNA cloning [36] 

C. iredalei Homogenate Proteobacteria - Malaysia Culturing methods using 
universal and selective 
medium plates 

[4] 

C. gigas Gill tissue, gonads 
and digestive glands 

Proteobacteria - Mexico 16S rDNA PCR amplification 
and fluorescent in situ 
hybridization 
(FISH) 

[43] 

T. chilensis Homogenate Proteobacteria - Chile 16S rDNA cloning [3] 
 

O. edulis Homogenate Proteobacteria - Mediterranean 
Spanish 
coast, Spain 

Culturing methods using 
Marine Agar plates and 
TCBS plates, and 
hybridization with 
phylogenetic probes 

[42] 
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Additionally, oyster microbiota can also be 
analyzed from oyster homogenate, which 
provides an overall microbial composition in 
oyster samples (Table 1). Despite the cause of 
potential over-estimation of bacterial diversity of 
oyster microbiota, oyster homogenate has been 
used for routine environmental laboratory testing 
to detect certain microbes via standardized 
procedures. For example, oyster homogenate 
has been used for detecting Vibrio spp. in oyster 
samples according to FDA Bacteriological 
Analytical Manual (BAM) method [57], which has 
been used as a standard protocol to monitor 
Vibrio spp. concentrations in public health 
laboratories. Each oyster homogenate sample is 
usually collected from combining several 
individual oysters, thus providing an approach for 
monitoring microbiome variations from an oyster 
population in a growing site through seasonal 
changes. In summary, due its relative accuracy, 
simplicity, and popularity, using oyster 
homogenate for oyster microbiota studies could 
be a standard and simplified procedure for 
research laboratories to study and compare the 
microbial differences in diverse oyster growing 
areas.  
 

As mentioned previously, multiple genomic 
analysis tools have been used to identify oyster 
microbiota (more detailed discussion following in 
section 7). For example, PCR-based next-
generation sequencing (NGS) via the 16S rDNA 
metagenomics approach have been widely used, 
however, the shotgun metagenomic sequencing 
method to detect oyster microbiota still remains a 
challenge. This is due to the difficulty in 
separating all microbes from blended oyster 
tissue cells, and microbial DNA extracted from 
oyster samples usually contain a large amount of 
host DNA. A possible method to overcome this 
difficulty can be achieved by removing oyster 
hemocytes from microbial cells through filtration 
using 0.2 µm filters. This could lead to the 
possible application of shotgun metagenomic 
sequencing to study microbial taxonomy as well 
as functional gene compositions in oyster 
microbiota.   
 

6. DYNAMIC OYSTER MICROBIOTA 
UNDER DIFFERENT CONDITIONS 

 

Microbiota found in oysters are dynamic and can 
be affected by many factors including oyster 
growth stages, water column fluctuations, 
temperature changes, host immune response 
and infectious processes [6,9,10,38,56-59]. 
Analyzing ever-changing dynamics within oyster 
microbiota could help to provide insight into how 

oyster microbial community changes in response 
to environmental fluctuations, as well as 
correlating these changes to assist in the 
prevention of disease outbreaks. 
 
Oyster microbial taxonomic compositions can 
change in different growth stages of life. 
Microbiota at the post-larval stage were found to 
be more diverse than those founded in the adult 
stage based on the results of ecological diversity 
measurements such as Chao1, Shannon-
Weaver (H'), and Simpson index [9]. Post-larval 
oyster microbiota could undergo certain changes 
when juvenile oysters were relocated to grow-out 
sites, based on the principal component analysis 
of 16S rDNA gene RFLP patterns [38]. The 
relative abundance of identified bacterial taxa 
indicated that oysters originated from the same 
post-larval hatchery could have a different 
microbiota composition if they grew up in 
different grow-out sites [9]. This phenomenon 
could be explained by the variability of nutrient 
sources that were available to the growth of 
oyster hatcheries in different grow-out sites. 
Thus, monitoring microbial changes in the same 
batch of oysters growing in different geographic 
areas could be helpful to discover potential core 
microbiota.  
 
Temperature is another influential factor on the 
composition of microbiota in oysters. A study by 
Lokmer et al. showed that the microbial 
dynamics and composition in healthy oysters 
could be significantly affected by temperature 
stress [10]. Another study indicated that 
temperature could change the oyster microbiota 
composition through regulation of the population 
of oyster dominant and temperature-sensitive 
bacteria such as Mycoplasma [52]. In addition to 
Mycoplasma, Vibrio populations in oysters could 
also be influenced by temperature, leading to the 
fluctuation of oyster microbiota [56]. 
 
Once oysters are harvested from their growing 
sites, their microbiota composition could be 
affected by storage conditions as well. 
Fernandez-Piquer et al. [60] reported that 
storage temperature could influence bacterial 
diversity in postharvest C. gigas. A spoilage 
experiment utilizing the oyster species, C. gigas 
and S. glomerata, indicated that Proteobacteria 
became abundant in which Pseudoalteromonas 
and Vibrio found to be dominant in both oyster 
species at 4°C after seven days of storage [8]. In 
addition to the storage temperature, other 
postharvest treatments, such as depuration, 
high-pressure treatment, and quick freeze 
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storage, could also influence the oyster 
microbiota [9,61]. Thus, understanding the oyster 
microbiota changes in the post-harvest process 
could be especially crucial in the surveillance of 
public health and prevention of food-related 
outbreaks. 
 
7. AVAILABLE TOOLS TO STUDY 

OYSTER MICROBIOTA 
 
Traditional methods of analyzing microbial 
communities include isolating bacterial strains 
using medium plates, counting colony forming 
units (CFU) on plates or using the most probable 
number (MPN) method, and analyzing microbial 
morphology using light and electron microscopy 
techniques [62-64]. For example, counting of the 
total number of CFU on Tryptic Soy Agar (TSA) 
plates can provide the rough estimation of 
particular bacterial strains grown in oysters [63]. 
Some cultivatable heterotrophic marine bacteria 
such as Vibrio spp. can also be isolated on 
marine Agar plates [42]. Specifically, Vibrio spp. 
such as V. splendidus and V. harveyi. can be 
isolated on the Vibrio selective Thiosulfate 
Citrate Bile Salts Sucrose (TCBS) Agar plates 
[28,63]. These methods are widely used in public 
health labs for oyster surveillance due to the 
relatively low cost and ease of utilization by lab 
technicians. Modifications of these traditional 
methods, such as applications of automated 
systems and newer selective media, could 
potentially be valuable for reducing the intensity 
of labor in public health laboratories. However, 
oyster surveillance studies are strongly 
influenced by weather and season (most of the 
studies are conducted during the summer), thus, 
limited usage time and high financial costs of 
automated systems limits their usage in smaller 
regional public health laboratories. 
 
Even with readily available laboratory techniques 
used to cultivate bacteria, only less than 0.01% 
of the total bacteria in oysters are able to be 
cultivated [3,65]. Therefore, it is necessary to 
develop culture-independent methods for 
identifying unknown bacteria in oyster microbial 
communities. In the last few decades, the 16S 
rDNA gene sequence analysis has been used to 
determine bacterial phylogenetic relationships 
[66]. Several methods have been applied in 
oyster bacteria sequencing based on the PCR 
amplification of 16S rDNA gene. These methods 
include fluorescent in situ hybridization (FISH) 
[43], 16S rDNA gene cloning, and Sanger 
sequencing [3,38,60]. The microbial population 
polymorphisms of 16S rDNA genes can also be 

analyzed by 16S rDNA based fingerprint 
methods including terminal restriction fragment 
length polymorphism (T-RFLP) analysis [60,67], 
temperature gradient gel electrophoresis (TGGE) 
[38], and denaturing gradient gel electrophoresis 
(DGGE) [44,68]. Of all the applications to 
advance from the use of the 16S rDNA gene, the 
most commonly used methods are 16S rDNA 
gene cloning and T-RFLP analysis. Although 
both methods are able to provide information on 
16S gene sequence, there are limitations 
associated with these methods. The 16S rDNA 
gene cloning method could provide detailed 
bacterial taxonomy information with the 
amplification and sequencing of the full-length 
16S gene, but it could only identify limited 
number of clones due to the cost of Sanger 
sequencing. On the other hand, the T-RFLP 
method could reveal whole community profiles 
cost-effectively but not be able to identify 
individual OTUs. Despite the high accuracy of 
these methods, they are mainly used for 
research purpose due to relatively high costs and 
the needs of well-trained lab technicians to utilize 
the techniques. As a result, these methods are 
useful tools for advancements in oyster research 
laboratories, but are not perfectly suitable for the 
public health laboratory in public health 
surveillance. For public health surveillance 
purposes, developing 16S rDNA gene based 
microarray techniques could be more valuable 
and practical if the cost is affordable for the small 
public health laboratories globally. 
 
In the past few years, the development of NGS 
techniques has been used to study oyster 
microbiota. Recently, longer and more accurate 
sequencing reads have been achieved [69]. The 
latest Roche 454 pyrosequencing platform GS 
FLX+ System can produce 1 million copies of 
1,000-bp reads in length [69]. The Illumina MiSeq 
platform can produce 25 million copies of 2×300 
bp reads using the 600v3 kit. These high-
throughput sequencing instruments can explore 
microbiota in much deeper depth by producing 
millions of OTUs per sample, compared to the 
traditional 16S rDNA cloning method that could 
usually obtain 100 clones per sample with an 
upper-limit of approximately 1000 clones [70,71]. 
The drawback of this new technique is that only a 
small fraction of the full-length 16S rDNA gene 
can be sequenced due to the short sequencing 
read length, which could hinder the detection of 
microbes at the species level. Despite this 
limitation, bacterial classification at higher 
taxonomic ranks could be easily identified and 
the relative abundance of bacteria within each 
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microbiome can be analyzed more accurately 
based on millions of OTUs (Table 1), which 
introduces a huge advance in studying oyster 
microbiota. Specifically, the PacBio 3rd 
generation sequencing platform could provide 
full-length 16S rDNA gene sequences, but its 
high cost restricts its usage only in well 
financially supported laboratories and scientific 
communities. 
 
The rapid improvement of metagenomic 
analytical methods could provide for an increase 
in approaches to study oyster microbiota. 
Different primer sets have been developed and 
evaluated in sequencing different regions of the 
16S rDNA gene [72]. The development of the 
Earth Microbiome Project and Human 
Microbiome Project has yielded many protocols 
and analytical methods [73,74]. New 16S rDNA 
primers have been developed to accommodate 
new sequencing platforms [75]. Several 
metagenomic analytical pipelines have been 
developed, such as CloVR [76], QIIME [77], 
Mothur [78], MG-RAST [79] and MetAMOS [80]. 
The NGS sequencer Roche 454 pyrosequencing 
platforms have been applied to decipher oyster 
microbiota using 16S rDNA gene metagenomic 
methods [6,8-10,25]. The popular Illumina MiSeq 
sequencer (San Diego, CA) has also been used 
in many 16S rDNA-based aquatic metagenomic 
studies [81,82], which could possibly be used for 
analyzing oyster microbiota. Furthermore, as the 
MiSeq sequencer has been used in public health 
laboratories for bacterial whole genome 
sequencing, implementation of the 16S rDNA 
based oyster microbiota analysis would be 
applicable in the near future. Thus, developing 
standardized protocols to be used across 
different laboratories would be necessary for 
comparing sequencing results. More specifically, 
easy-to-use analytical tools are needed for public 
health laboratories capable of detecting small 
amount of pathogenic bacteria from a large 
bacterial population in oyster microbiota using 
the 16S rDNA metagenomic method. In addition 
to the 16S rDNA gene sequences, using a 
shotgun metagenomic approach to monitor 
oyster microbiota would generate more genomic 
information on functional genes (such as Vibrio 
specific genes and other toxin genes), which can 
be a potential benefit of using this method. 
However, the shotgun method remains a 
challenge due to the need for high-throughput 
sequencing platforms larger than MiSeq and 
other new methods in order to remove oyster 
host DNA from sequencing samples. 

8. FUTURE PERSPECTIVES 
 
Although some oyster microbiota have been 
extensively studied with the development of 
metagenomic analytic techniques, the majority of 
their functions to their host oysters remains to be 
discovered. Elucidating dynamic oyster 
microbiota using NGS techniques and statistical 
models could help to monitor microbiome 
fluctuations, which could benefit the oyster 
industry and prevention of oyster-related food 
outbreaks. Future challenges may also include 
defining and further classifying core microbiota 
from different oyster species in different growing 
regions using both 16S rDNA and shotgun 
metagenomic sequencing methods. In addition, 
oysters are an effective transmission vehicle of 
other pathogens such as Cryptosporidium, 
Giardia, Enterovirus and Norovirus that can infect 
humans and lead to human diseases [83-85]. 
With this mind, studying the potential 
transmission of pathogens from oysters to 
human might also be valuable for public health 
surveillance and consideration.  
 
9. CONCLUSION 
 
In conclusion, microbiota from different oyster 
species have been analyzed in recent studies 
and several major microbial taxa have been 
identified. Different oyster tissues may contain 
diverse microbial contents, which may be 
suitable for various applications. Oyster 
microbiota could change due to different            
growing stages and environmental conditions. 
New emerging genomic analytical technologies 
have provided more accurate solutions                       
for analyzing an ever-changing oyster  
microbiota.   
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