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1 Introduction

Starting with the 1935 paper of Potter and Titchmarsh [1], the attempts to find counterexamples
to the Generalized Riemann Hypothesis (GRH) multiplied (see [2], [3], [4]). The idea was to
use linear combinations of Dirichlet L-series. These are no more Euler products, but their analytic
continuations to the whole complex plane can still satisfy some Riemann type of functional equations.
There were two approaches to achieve this goal: one was to chose conveniently the coefficients of the
respective linear combination, as in the case of the so called Davenport and Heilbronn function [1],
[4] and the other one was to use L-functions satisfying the same functional equation, for which any
linear combination would do. An exhaustive presentation of this topic can be found in [5]. Important
contributions were brought by Voronin [6], Bombieri and Heijhal [7], Bombieri and Mueller [8], Lee
[9] etc.

Potter and Titchmarsh thought they had identified for the Davenport and Heilbronn function two
such zeros, yet they acknowledged that ”the calculations are very cumbrous, and can hardly be
considered conclusive”. However, more such zeros were indicated in [2], [3] and [4]. A mismatch
of Dirichlet characters in the formula for that function brought us to think that (see [10]) the
approximation errors which naturally affected their computation produced false off critical line
zeros. Our geometric function theory approach in [10] was showing that such zeros cannot exist.
We discovered later our mistake and came in [11] with a correction.

In this paper we shall deal with the second approach, namely that of linearly independent L-
functions satisfying the same functional equation. We perceive this class of functions not as a
source of counterexamples to the GRH, but rather as a confirmation of the theory developed in
[12] and [13] and [14] in which we have shown that if a general Dirichlet series can be continued
analytically to the whole complex plane and the extended function satisfies a Riemann type of
functional equation then, under some other mild constraints, its nontrivial zeros have all the real
part equal to 1/2.

On the other hand, dealing with cases similar to that studied by Potter and Titchmarsh, we will
show that their continuous deformations represent an inexhaustible source of functions satisfying
Riemann type of functional equations, not satisfying GRH and possessing double non trivial zeros
on the critical line. As shown in [15], L-functions for which GRH has been formulated, do not
have double zeros and therefore these continuous deformations do not represent counterexamples
to GRH.

The adopted meaning of the concept of trivial zero is that which has been originally implied, namely
zeros of some elementary factors of the function (which can be trivially computed). Incidentally,
for the Riemann Zeta function those zeros were the real zeros of the function, fact which generated
the idea that the trivial zeros should be always real. Yet, for some other L-functions, as for example
those defined by non primitive Dirichlet characters, it is known that trivial imaginary zeros can
exist. Also, the function (2.1) below has zeros on the critical line, namely those of the factor
(1 +

√
5/5s) which can be trivially computed, hence they are trivial zeros.

As seen in [16], only adopting this approach, the trivial zeros of the derivatives of some L-functions
can be unambiguously defined. On the other hand, regarding GRH, we don’t need any more to make
a distinction between primitive and non primitive Dirichlet characters, since the zeros associated
with non primitive characters, which should be discarded, are trivial.
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2 Riemann Type of Functional Equations Having Several
Linearly Independent Solutions

The typical example of a pair of linearly independent L-functions f0(s) and f1(s) satisfying the
same functional equation was given in [4],

where

f0(s) =

(
1 +

√
5

5s

)
ζ(s) (2.1)

which coincides for s > 1 with the sum of the Dirichlet series with periodic coefficients:

1 +
1

2s
+

1

3s
+

1

4s
+

1 +
√
5

5s
+ ... (2.2)

and f1(s) is L(5, 3, s), obtained by analytic continuation to the whole complex plane of the Dirichlet
series with periodic coefficients

1− 1

2s
− 1

3s
+

1

4s
+

0

5s
+ ... (2.3)

It is obvious that (2.2) and (2.3) are linearly independent, since (2.2) tends to ∞ as s− > 1, while
(2.3) is convergent at s = 1. The functions f0 and f1 satisfy both the Riemann functional equation:

f(s) = W (s)f(1− s), (2.4)

where W (s) = 5(1/2)−s2(2π)s−1Γ(1− s) sin πs
2
.

Since both functions are real on the real axis we have fk(1− s) = fk(1 − s), k = 0, 1 and if
fk(σ0 + it0) = 0, then necessarily fk(σ0 − it0) = 0 and due to (2.4) if W (σ0 + it0) ̸= 0 we have
also fk(1− σ0 + it0) = 0. It can be easily checked that any linear combination with real coefficients
f = α0f0+α1f1 of f0 and f1 is real on the real axis and f satisfies also (2.4) with f(1− s) = f(1−s).

If one of the coefficients αk is not real then f(s) is not real for real s, which implies that f(s) does
not satisfy (2.4). Indeed, f(1− s) = α0f0(1− s) + α1f1(1− s) hence f(s) ̸= W (s)f(1− s).

Let us denote
φτ (s) = (1− τ)f0(s) + τf1(s), 0 ≤ τ ≤ 1, (2.5)

where f0 and f1 are the functions (2.2) and (2.3).

We give to the word deformation used in [3] the following precise meaning: the family of functions
{φτ (s) | 0 ≤ τ ≤ 1} given by the formula (2.5) represents a continuous deformation of f0(s) into
f1(s) if for any compact set K ⊂ C\{1} and any τ0 ∈ [0, 1] we have lim

τ→τ0
φτ (s) = φτ0(s) uniformly

in K. Obviously φ0(s) = f0(s), respectively φ1(s) = f1(s). Sometimes we will call a particular
function φτ (s) a deformation of f0(s) or of f1(s).

Theorem 2.1. For every τ ∈ [0, 1], the functions φτ (s) given by (2.5) satisfy (2.4) and define a
continuous deformation of f0(s) into f1(s).

Proof: Since f0(s) and f1(s) satisfy (2.4), and fk(s) = fk(s) we have:

φτ (s) = (1− τ)f0(s) + τf1(s) = (1− τ)W (s)f0(1− s) + τW (s)f1(1− s)

= W (s)[(1− τ)f0(1− s) + τf1(1− s)] = W (s)φτ (1− s),
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hence φτ (s) satisfies (2.4) for every τ , 0 ≤ τ ≤ 1.

For any compact K ⊂ C\{1}, we have that maxk sup
s∈K

|fk(s)| is a finite number M , due to the

uniform continuity of fk on K. Then |φτ (s)− φτ ′(s)| = |τ ′ − τ ||f0(s)− f1(s)| ≤ 2M |τ ′ − τ | in K.
�
Although there were no specific values indicated, it has been implied in [3] that some of the zeros
of φτ (s) should be off critical line. However, we can prove the following:

Theorem 2.2. For every τ ∈ [0, 1] the non trivial zeros of φτ (s) given by (2.5) have the real part
equal to 1

2
.

Proof: Let us notice that f0(s) has the same non trivial zeros as ζ(s) and f1(s) is the Dirichlet
L-function L(5, 3, s). By GRH, which we are taken as true in this paper (see [12] and [14]), the non
trivial zeros of the two functions have the real part 1/2. To prove the theorem we need only to check
that φτ (s) is the analytic continuation to the whole complex plane, except for the pole s = 1 of the
corresponding linear combination of the two series, which due to the uniqueness theorem of analytic
functions is obvious, and that limσ−>+∞ φτ (σ+ it) = 1. Indeed, this last equality is true having in
view that both f0(s) and f1(s) have the limit 1 as σ− > +∞. Replacing f0(s) by (1− 21−s)f0(s),
f1(s) by (1− 21−s)f1(s) and W (s) by [(1− 21−s) / (1− 2s)]W (s), the corresponding series of (2.1),
(2.3) and (2.5) will have all the abscissa of convergence σc = 0. Then, by [14], Theorem 3, all the
non trivial zeros of φτ (s) have the real part 1/2. �

We will be dealing in the following with arbitrary L-functions (see [13]), including Dirichlet L-
functions (see [12], [17], [18]). The interest in a more general setting consists also in the fact that
the fascinating universality property of Riemann Zeta function extends to a wide class of functions,
as shown in [19] and [20].

Theorem 2.3. Let f0 and f1 be two L-functions such that lim
σ→∞

fk(σ + it) = 1, k = 0, 1 and such

that they satisfy the same Riemann type of functional equation and GRH. If all the non trivial zeros
of φτ (s)defined by (2.5) are simple for every τ ∈ [0, 1], then for all τ , φτ (s) satisfy GRH.

Proof: Suppose that for a certain τ ∈ [0, 1] , φτ (s) has a zero sτ with Re (sτ ) ̸= 1/2. By Theorem
1, φτ (s) satisfies the same functional equation as fk(s).

Then we have also φτ (1 − sτ ) = 0. As τ− > 0, sτ and 1 − sτ tend both to a zero s0 of f0(s) (see
next theorem), which should hence be a double zero and this is by [15] a contradiction. �

Fig. 1. Re (φτ (s)) = 1/2 for every τ , 0 ≤ τ ≤ 1

Fig. 1 illustrates this situation for the particular values of τ : 0, 0.25, 0.5, 0.75, 1 and s ∈
[0, 1]× [0, 30]. For the seek of space economy the axes have been rotated by π/2. It can be seen how
the zeros of f0(s) evolve alongside the critical line into those of f1(s) as τ varies from 0 to 1.

This phenomenon suggests a strong connection between the non trivial zeros of two L-functions
satisfying the same Riemann type of functional equation, namely it indicates that the zeros of each
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one of them separate the zeros of the other one in the sense that the zeros of the two functions
alternate or if two of them coincide, then the others alternate.

Theorem 2.4. Let f0 and f1 be two L-functions such that lim
σ→+∞

fk(σ + it) = 1, k = 0, 1 and they

satisfy the same Riemann type of functional equation. If for every τ, 0 ≤ τ ≤ 1, φτ (s) defined by
(2.5) satisfies GRH, then any interval I = {1/2+ it|t1 ≤ t ≤ t2} of the critical line can be extended
to an interval I ′ such that f0 and f1 have the same number of zeros in I ′.

Proof: We notice that φτ (s) defined by (2.5) satisfies also the respective functional equation. Let
us follow the trajectory of one particular zero of f0(s) when τ varies from 0 to 1. We have

f0(s)− φτ (s) = τ [f0(s)− f1(s)] .

In particular, if f0(s0) = 0 and f1(s0) = 0, then φτ (s0) = 0 for every τ, 0 ≤ τ ≤ 1. Vice-versa,
if f0(s0) = 0 and φτ (s0) = 0 for a value of τ, we have that f1(s0) = 0 and then φτ (s0) = 0 for
every τ, 0 ≤ τ ≤ 1. Suppose that for a given s0 we have f0(s0) = 0 and f1(s0) ̸= 0. Then |φτ (s0)|
= τ |f1(s0)| and for every ϵ > 0 there is δ > 0 such that |φτ (s0)| < ϵ if τ < δ, which means that
the disc centered at φτ (s0) and of radius ϵ contains the origin. Thus the pre-image by φτ (s) of this
disc contains at least one zero of φτ (s). The number of zeros of φτ (s) in this neighborhood must
be finite, hence it make sense to look for the closest zero to s0.

However, two different zeros, one above s0 and the other below s0 on the critical line might have
both the smallest distance to s0. In such a case we need to take a smaller τ and repeat the reasoning
until the uniqueness condition is fulfilled. This must happen after a finite number of steps, since
otherwise s0 would be a double zero of f0(s), which by [15] is not possible. Let sτ be the closest
zero to s0 of φτ (s) as previously defined. We can interpret φτ (s) as a deformation of f0(s) which
carried with it the zero s0 into a new location sτ on the critical line. By the previous analysis, this
is a continuous motion in the sense that any intermediate value sτ ′ is a zero of the corresponding
φτ ′(s). At the next step, the deformation of φτ (s), which is a new deformation of f0(s) (this can be
checked easily) will carry sτ to a new location sτ ′′ and so on. At every step s0 is moved (obviously
in the same direction) into an open neighborhood on I and since I is a compact set, after a finite
number of steps τ = 1, hence φτ (s) = f1(s) and s0 is carried to a zero s1 of f1(s). A continuous
deformation of f1(s) into f0(s) can be performed analogously and this process establishes a one-to-
one correspondence between the zeros of f0(s) and those of f1(s) such that if an interval I for t is
given we can extend it if necessary to a bigger one which contains only pairs of corresponding zeros
of the two functions and the theorem is completely proved. �

Theorem 2.5. Let S
(0)
k and S

(1)
k be the Sk-strips of two functions f0(s) and f1(s) from Theorem

2.4. Then every intersection S
(0)
k ∩ S

(1)

k′ contains the same number of non trivial zeros of f0(s) and
of f1(s) or these numbers are different by one unit.

Proof : Let s
(0)
k and s

(1)
k be the intersection of the critical line with the curves Γ′

k corresponding

to f0(s) respectively f1(s). Suppose s
(0)
k < s

(1)
k . Since f0(s

(0)
k ) > 1, s

(0)
k cannot be a zero of f0(s).

However, it can be a zero of f1(s). If f1(s
(0)
k ) = 0, then the next zero belongs to f0(s), or it

is a common zero of both functions and the zeros alternate in the sense previously described.
When counting the respective zeros, the numbers should be either the same, or different by a unit.
Therefore the one-to-one correspondence between the zeros of the two functions can be confined
to the respective intersections if we assign the extra zero when it appears to one of the adjacent
intersections.�

It appears that this property extends to Davenport and Heilbronn type of functions. We illustrate
this affirmation by Fig. 2 below where we took the Davenport and Heilbronn type of functions

f0(s) =
1

2
[(1 + 0.3088766085i)L(17, 2, s) + (1− 0.3088766085i)L(17, 16, s)]
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and

f1(s) =
1

2
[(1− 3.237538785i)L(17, 2, s) + (1 + 3.237538785i)L(17, 16, s)].

For the seek of space economy, the axes are rotated by π/2. Four intersections S
(0)
k ∩S

(1)
k are visible

containing 6 and 5, 0 and 0, 3 and 4, respectively 6 and 5 zeros of the two functions.

Fig. 2. S
(0)
k ∩ S

(1)

k′ contain roughly the same number of zeros

Remark 2.1. If we denote by N (0)(T ) and N (1)(T ) the number of non trivial zeros of f0(s)
respectively f1(s) in the interval [0, T ] or in the interval [−T, 0] of the critical axis, then by Theorem

2.5 we have N (0)(s
(0)
k ) = N (1)(s

(0)
k ) + κ and N (0)(s

(1)
k ) = N (1)(s

(1)
k ) + κ for every k ∈ Z, k ̸= 0,

where κ is 0 or ±1.

Remark 2.2. An interesting question arises about some of the non trivial zeros of the function f1(s)
obtained by analytic continuation of the Dirichlet series (2.3). It can be noticed that the zeros of
1 + 5(1/2)−s are preserved during the continuous deformation of f0(s) into f1(s), in other words
some of the apparently non trivial zeros of f1(s) are the same as some trivial zeros of f0(s). This
apparent contradiction can be settled by noticing that f1(s) can be also factorized by 1 + 5(1/2)−s.
Indeed

1− 1

2s
− 1

3s
+

1

4s
+

0

5s
+

1

6s
− 1

7s
− 1

8s
+

1

9s
+

0

10s
+ ... =

(
1 +

√
5

5s

)(
1− 1

2s
− 1

3s
+

1

4s
−

√
5

5s
+

1

6s
− 1

7s
− 1

8s
+

√
5

10s
+ ...

)
.

This last series has the same abscissa of convergence as the series (2.3) and it can be continued
analytically to the whole complex plane to an L-function f2(s). Hence the true non trivial zeros of
f1(s) are only those which are non trivial also for f2(s).

The Figs. 1 and 2 give us a lot of visual information which is waiting to get a rigorous proof. On the
other hand, despite of all the expectations, under the assumptions adopted in [4], the affirmation
in [4] and [18] that given two linearly independent solutions f1(s) and f2(s) of a Riemann-type of
functional equation, the function f(s) = f1(s0)f2(s) − f2(s0)f1(s) satisfies the respective equation
must be false. Obviously f(s) has the arbitrary zero s0,which can be taken off critical line. We
dealt with this topic in the opinion paper[11].
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3 More Dirichlet L-Functions Satisfying the Same Func-
tional Equation

Let L(s;χk) be the Dirichlet L-function defined by a Dirichlet character χk modulo q, i.e.

L(s;χk) =

∞∑
n=1

χk(n)

ns
(3.1)

where χk(n) is the k-th Dirichlet character modulo q. Then L(s;χk) satisfies (see [9]) the functional
equation

L(s;χ) = ϵ(χ)W (s)L(1− s;χ), (3.2)

where W (s) = 2sq(1/2)−sπs−1Γ(1 − s) sin π
2
(s + κ) and κ = 0 if χ(−1) = 1 (χ is even), κ = 1 if

χ(−1) = −1 (χ is odd), ϵ(χ) = τ(χ)/iκ
√
q and τ(χ) = Σq

k=1χ(k)Exp{2πi/q}, |ϵ(χ)| = 1

Obviously, if χk and χk′ have different parities, the corresponding functional equations are different
and if χk and χk′ have the same parity in order for these functional equations to coincide, we must
have τ(χk) = τ(χk′). In other words, L(s;χk) and L(s;χk′) satisfy the same functional equation
if and only if τ(χk) = τ(χk′). Yet, the line matrices having the components χk(n)Exp{2nπi/q}
are linearly independent and therefore k ̸= k′ implies τ(χk) ̸= τ(χk′). Therefore, no two Dirichlet
L-functions can satisfy the same Riemann type of functional equation. In order to find L-functions
satisfying the same functional equation we need to expand on the example from the section 2,
considering an arbitrary modulus q. So, let

f0(s) = [1 + q(1/2)−s]ζ(s) (3.3)

and let us notice that f0(s) satisfies the functional equation

f(s) = W (s)f(1− s), where W (s) = qs−1/22(2π)s−1Γ(1− s) sin
πs

2
(3.4)

Then we should look for even real primitive non principal characters χ( mod q), which generate
Dirichlet L-functions satisfying the functional equation (3.4). For q = 5, such a candidate is χ3(
mod 5), which we have already encountered. Then, ordered by increasing q the next characters of
interest are: χ2( mod 8), χ3( mod 10), χ4( mod 12), χ7( mod 13), χ3( mod 15), χ9( mod 17),
χ10( mod 21), etc. We cannot find a formula generating all these characters, but it is reasonable
to assume that their sequence is infinite.

There are also odd quadratic characters satisfying a similar equation, namely χ2( mod 3), χ2(
mod 4), χ2( mod 6), χ4( mod 7), χ6( mod 11), χ3( mod 12), χ4( mod 14), χ5( mod 15), χ10(
mod 19), etc. We checked that for all these characters, even and odd, ϵ(χ) = 1, but since κ = 1 for
odd characters, we have cos πs

2
instead of sin πs

2
in the expression of W (s).

The Dirichlet L-functions L(q, k, s) defined by quadratic even characters χk satisfy each one the
equation (3.4) corresponding to the respective q. The same equation is satisfied by (1+q(1/2)−s)ζ(s).
To find a similar property for the odd characters, we need to replace the right hand side in the
formula (3.3) by a Davenport and Heilbronn function modulo q (see [11]), which contains in (3.4) the
right trigonometric function, i.e. which is defined using odd complex conjugate Dirichlet characters
modulo q in the formula:

f0(s) =
1

2
{[L(s;χ) + L(s;χ)] + i tan θ[L(s;χ)− L(s;χ)]} (3.5)

and where ϵ(χ) = e2iθ.
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On the other hand, if χ and χ are even complex conjugate Dirichlet characters and for the respective
q there is an even quadratic Dirichlet character χk, then L(q, k, s) satisfies also the functional
equation (3.4).

Theorem 3.1. For q and k from the previous sequence the function L(q, k, s) has some trivial zeros
on the critical line, namely the zeros of 1+ q(1/2)−s and its non trivial zeros are obtained by moving
to their location some zeros of f0(s) from (3.3), respectively (3.5) by a continuous deformation of
f0(s) into L(q, k, s). The trivial zeros on the critical line of the two functions are the same and they
are preserved through deformation. Any interval I for t can be extended to I ′ such that f0(s) and
L(q, k, s) have the same number of zeros in I ′.

The proof of this theorem is similar to that of Theorem 2.3 and we skip it. It is important however
to notice that since the non trivial zeros of f0(s) from (3.3) and those of L(q, k, s) are on the critical
line, the trajectories of these zeros must remain on the critical line, as seen in Theorem 2.3. Not the
same thing happens with those non trivial zeros of f0 from (3.5) which are off critical line. Yet, the
deformation φτ (s) of f0(s) continues to satisfy a Riemann type of functional equation, which implies
that the non trivial zeros off critical line must be symmetric two by two with respect to the critical
line. In other words, every couple of zeros situated in horizontal position is moved continuously
when τ varies from 0 to 1 into a couple of zeros situated in vertical position. Such a motion is
possible only if for a value of τ the two zeros coincide, i.e. the respective φτ (s) has a double zero.
Therefore the continuous deformations of the Davenport and Heilbronn type of functions represent
an unlimited source of functions which are obtained by analytic continuation to the whole complex
plane of Dirichlet series, satisfying Riemann type of functional equations and possessing double
zeros. The Davenport and Heilbronn function has been obtained by using odd Dirichlet characters
modulo 5, in which case no quadratic odd Dirichlet character exists, hence the idea of double zeros
could not appear.

However, this could have been done if somebody realized that the equation ϵ(χ) = e2iθ has
two solutions, namely tan θ = 0.2840790438... and tan θ = −3.520147022... Only the first one is
mentioned in all the publications on this topic (see [1], [2], [3], [4], [17]). Using both of them, two
linearly independent Davenport and Heilbronn type of functions could have been defined satisfying
both the same Riemann-type of functional equation and a continuous deformation of one into the
other could have provided an example of function having double non trivial zeros. We came with
such an example for the Davenport and Heilbronn type of functions defined by L(17, 2, s) and
L(17, 16, s) in Fig. 2. For these functions tan θ is −0.3088766085... and 3.237538785...

We give next a short list of Dirichlet characters which generate Davenport and Heilbronn type of
functions having deformations which display double zeros. It is obvious that the long list is infinite.
On the other hand, for every modulus q big enough there are several couples of complex conjugate
Dirichlet characters having the same parity as the quadratic non principal character modulo q,
therefore several Dirichlet L-functions to be used for the purpose of producing Davenport and
Heilbronn type of functions which have continuous deformations into Dirichlet L-functions. We
chose the first three prime moduli greater than 5 and computed for them the corresponding values
of tan θ to offer a ready-to-use sample of L-functions possessing double zeros.

For q = 7, we have the odd complex conjugate Dirichlet characters χ2 and χ6 and the quadratic
odd Dirichlet character χ4.We have found tan θ = 0.66518189... or tan θ = −1.503348205... For the
first value we present in Fig. 3 below an illustration of the phenomenon described above.

To obtain Fig. 3 we needed to locate first approximately the symmetric zeros with respect to the
critical line of the function (3.5) where q = 7 and χ = χ2( mod 7). Taking the pre-image of the real
axis by f0(s) for t ∈ [30, 60], three pairs of symmetric zeros have been detected, namely when t is

8
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approximately 31.5, 49.5 and 59, as it can be seen in Fig. 4 below. We chose t = 31.5. The first row
in Fig. 3 represents instances of the continuous deformation of f0(s) into L(7, 4, s) corresponding to
the values 0, 0.25, 0.5, 0.75, 1 of the parameter τ. We notice that the switch from horizontal setting
to vertical setting of the respective symmetric zeros happens for a τ in the interval [0.25, 0.5]. The
second row portrays the instances of that continuous deformation corresponding to five values of τ
in this last interval. It looks like φ0.34375 has a double zero at 0.5 + 31.5i.

Fig. 3. Double zero obtained by trial and error for τ = 0.34375

Fig. 4. The pre-image of the real axis by f0(s) in the box [−2, 2]× [30, 60]

When the distance between the symmetric zeros with respect to the critical line is small, as in the
case of t = 49.5, the change of configuration in the neighborhood of the double zero can be sudden,
which makes difficult the estimation of the value of τ corresponding to a double zero. As it can be
seen in Fig. 5, a bound of 10−8 for the error of τ was still not good enough for an accurate location
of that double zero. Yet, there is no doubt that this zero exists.

τ = 0.046875 τ = 0.046875002

Fig. 5. Sudden change of configuration in a neighborhood of a double zero.

The following table provides ready-to-use data for computer experimentation in hunting for double
zeros of continuous deformations of Dirichlet L-functions.
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Table. 1. Data for computer experimentation

q complex conju- quadratic tan θ1 tan θ2
gate characters character

7 χ2 and χ6 χ4(odd) 0.6651818899... −1.503348205...
7 χ3 and χ5 χ4 −0.2342612812... 4.268737860...

11 χ2 and χ10 χ6 (odd) −0.7434740182... 1.345036915...
11 χ4 and χ8 χ6 (odd) 0.3638119069... −2.748673095...
11 χ3 and χ9 χ6 0.3381131754... −2.957589566...
11 χ5 and χ7 χ6 0.4810328598... −2.078860060...

13 χ3 and χ11 χ7 (even) 0.2748333011... −3.642777128...
13 χ5 and χ9 χ7 (even) 0.7724331007... −1.294610496...
13 χ2 and χ12 χ7 0.5602830041... −1.784812305...
13 χ4 and χ10 χ7 0.7420558960... −1.347607245...
13 χ6 and χ8 χ7 0.9621130197... −1.039378929...

In every case the Davenport and Heilbronn type of function has the form

f0(s) =
1

2
[(1− i tan θ)L(q, k, s) + (1 + i tan θ)L(q, q + 1− k, s)].

For q = 7, 11 and 13 and for odd Dirichlet characters a continuous deformation of the corresponding
f0(s) into L(7, 4, s), L(11, 6, s) and respectively L(13, 7, s) can be performed. Similarly, for even
Dirichlet characters, a continuous deformation of the corresponding f0(s) into [1 + 7(1/2)−s]ζ(s),
[1 + 11(1/2)−s]ζ(s) and respectively [1 + 13(1/2)−s]ζ(s) can be performed. Each one of these
deformations will display a double zero for some τ. Continuous deformations can be considered
between two functions such that none of them satisfies GRH. Then we have:

Theorem 3.2. Let f0(s) and f1(s) satisfy the same Riemann-type of functional equation, but do
not satisfy GRH. A continuous deformation φτ (s) of f0(s) into f1(s) can carry two zeros of f0(s)
symmetric with respect to the critical line into two zeros of f1(s) on the critical line and vice-versa.
If this is the case, then there is τ0, 0 < τ0 < 1 such that φτ0(s) has a double zero, which is located on
the critical line. There is a one-to-one correspondence between the zeros of f0(s) and f1(s) such that
every intersection of fundamental domains of the two functions contains roughly the same number
of zeros of each one of them.

Proof: A double zero of φτ0(s) , if it exists, is the limit as τ− > τ0 of symmetric zeros with
respect to the critical line of φτ (s), thus it must be located on the critical line. The one-to-one
correspondence between the zeros of f0(s) and f1(s) is a corollary of Theorem 5. In particular, the
number of zeros of f0(s) and of f1(s) in the intersection of two fundamental domains of each one
of the two functions can be different by at most one unit.

4 Conclusions

A closer look into a method intended to provide counterexamples to GRH allowed us to reveal
properties common to a whole class of functions labelled as Davenport and Heilbronn type of
functions.

Continuous deformations of these functions represent an inexhaustible source of functions satisfying
Riemann type of functional equations and having off critical line non trivial zeros. They also exhibit
double non trivial zeros, the hunt for which was unsuccessful until now.
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However, they are not counterexample for GRH, since they do not belong to the class of functions
for which GRH has been formulated.
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