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Abstract: The theory of multigroups is a generalized group’s theoretic notions in multiset framework.
Although myriad of researches have been done in multigroup theory, but some group’s analogue concepts
have not been investigated in multigroup setting. In this paper we propose the notions of divisible and
pure multigroups and characterize some of their properties. It is established that the image and preimage of
homomorphism of divisible and pure multigroups are divisible and pure multigroups. The nexus between
divisible and pure multigroups and that of divisible and pure groups are instituted using the concept of cuts
of multigroups.
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1. Introduction

T he term multisets as buttressed by Knuth [1], was first recommended by N. G. de Bruijn (cf. [2]) in a
communication to D. E. Knuth, as a generalization of classical sets, by violating the principle of distinct

collection of elements in set theory. Both the theory and applications of multiset have been extensively studied
in [3–8]. In a way to apply group theory to multisets, Nazmul et al., [9] proposed the concept of multigroups
in multisets framework and presented a number of results, just as group theory stem out of set theory. A
comprehensive account on the concept of multigroups has been carried out, and it has been established that
multigroup via multiset is a generalization of group theory [10].

Several researches have emerged on the concept of multigroup theory. Some results on multigroups
which cut across some homomorphic properties were explored in [11,12]. The notions of upper and lower
cuts of multigroups were introduced and discussed in details with some number of results in [13], and the
notions were extended to homomorphism in [14]. Some group’s analogous concepts like normal subgroups,
characteristic subgroups, direct product, cosets, factor groups and group actions, etc. have been established
in multigroup context [15–27]. The idea of commutators in multigroup context has been studied in [28]. The
notion of ring structure from multiset context has been proposed and some related results deduced [29].

Though numerous constructs in group theory have been established in multigroup structure, some
constructs have not been considered in multigroup context. The notions of divisible and pure groups have been
hitherto studied in other non-classical groups like fuzzy groups and intuitionistic fuzzy groups, respectively
[30–32]. This paper attempts to strengthen multigroup theory by characterizing the constructs of divisible
and pure multigroups which are the applications of divisible and pure groups in multisets. We first defined
a special multisets of a group to boost the introduction of divisible and pure multigroups. We study the
homomorphic image and preimage of divisible and pure multigroups and found that they are divisible and
pure multigroups. The correlation between divisible and pure multigroups and that of divisible and pure
groups are established using the idea of multigroup cuts. The rest of the paper is outlined as follows; Section
2 presents the ideas of multisets, multigroups and some helpful existing results. Section 3 discusses and
characterizes divisible multigroups. Finally, Section 4 gives a precise conclusion with area of future research.

2. Preliminaries

Throughout this paper X denotes non-empty set and G denotes an additive group with identity element
0.
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Definition 1. [8] Let X be a set. A multiset A over X is just a pair 〈X, CA〉, where

CA : X → N = {0, 1, 2, ...}

is a function, such that for x ∈ X implies A(x) is a cardinal and A(x) = CA(x) > 0, where CA(x) denoted the
number of times an object x occur in A. Whenever CA(x) = 0, implies x /∈ X. The set X is called the ground or
generic set of the class of all multisets containing objects from X.

Definition 2. [7] Let X be the set from which multisets are constructed. The multiset Xn is the set of all
multisets of X such that no element occurs more than n times. Likewise, the multiset X∞ is the set of all
multisets of X such that there is no limit on the number of occurrences of an element.

Definition 3. [7] Let A, B be multisets of X. Then

(i) A = B⇐⇒ CA(x) = CB(x) ∀x ∈ X,
(ii) A ⊆ B⇐⇒ CA(x) ≤ CB(x) ∀x ∈ X,

(iii) A∩ B =⇒ CA∩B(x) = CA(x) ∧ CB(x) ∀x ∈ X,
(iv) A∪ B =⇒ CA∪B(x) = CA(x) ∨ CB(x) ∀x ∈ X,
(v) A⊕ B =⇒ CA⊕B(x) = CA(x)⊕ CB(x) ∀x ∈ X,

where ∧ and ∨ denote minimum and maximum respectively.

Definition 4. [9] Suppose {Ai}i∈I is an arbitrary family of multisets of X. Then
⋂

i∈I Ai =
∧

i∈I CAi (x) ∀x ∈ X
and

⋃
i∈I Ai =

∨
i∈I CAi (x) ∀x ∈ X.

Definition 5. [9] A multiset A of G is called a multigroup if

(i) CA(x + y) ≥ CA(x) ∧ CA(y) ∀x, y ∈ G,
(ii) CA(−x) = CA(x) ∀x ∈ G.

From (i) and (ii), we have CA(x− y) ≥ CA(x) ∧ CA(y) ∀x, y ∈ G. In fact, in a multigroup A of G, CA(0) ≥
CA(x) ∀x ∈ G.

Definition 6. [10] A multigroup A of G is said to be constant or has a constant count function if CA(x) = CA(y)
∀x, y ∈ G.

Definition 7. [10] A multigroup A of G is said to be commutative if and only if

CA(x + y) = CA(y + x) ∀x, y ∈ G.

Proposition 1. [9] If A and B are multigroups of G, then (i) A ∩ B and A⊕ B are multigroups of G, (ii) A ∪ B is a
multigroup of G provided A ⊆ B.

Theorem 1. [13] Let A be a multigroup of G. Then, the sets An and An defined by

An = {x ∈ G | CA(x) ≥ n}

and
An = {x ∈ G | CA(x) ≤ n}

where n ∈ N, are subgroups of G for n ≤ CA(0) and n ≥ CA(0), respectively.

Theorem 2. [22] Let A be a multiset of G and n ∈ N.

(i) If every An for n ≤ CA(0) is a subgroup of G, then A is a multigroup of G.
(ii) If every An for n ≥ CA(0) is a subgroup of G, then A is a multigroup of G.

Definition 8. [12] Let f : G → G′ be a homomorphism of groups. Suppose A and B are multigroups of G and
G′, respectively. Then, f induces a homomorphism from A to B which satisfies

(i) CA( f−1(y1y2)) ≥ CA( f−1(y1)) ∧ CA( f−1(y2)) ∀y1, y2 ∈ G′,
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(ii) CB( f (x1x2)) ≥ CB( f (x1)) ∧ CB( f (x2)) ∀x1, x2 ∈ G,

where

(i) the image of A under f , denoted by f (A), is a multiset of G′ defined by

C f (A)(y) =

{ ∨
x∈ f−1(y) CA(x), f−1(y) 6= ∅

0, otherwise

for each y ∈ G′.
(ii) the preimage of B under f , denoted by f−1(B), is a multiset of G defined by

C f−1(B)(x) = CB( f (x)) ∀x ∈ G.

Proposition 2. [12] Let f : G → G′ be a homomorphism of groups, A and B be multigroups of G and G′, respectively.
Then f (A) is multigroup of G′ and if f is an isomorphism, then f−1(B) is a multigroup of G.

3. Divisible multigroups and pure multigroups

This section introduces the concepts of divisible and pure multigroups and presents some of their
properties.

3.1. Some properties of divisible multigroups

Recall that an abelian group G is divisible if for every positive integer n and any x ∈ G, ∃ y ∈ G such that
ny = x. Equivalently, an abelian group G is divisible if and only if nG = G, where n is any positive integer
and nG = {nx|x ∈ G}.

Definition 9. Let A be a multiset of G. Then, the set nA, where n is a positive integer is defined as

CnA(x) =

{ ∨
x=ny CA(y), x ∈ nG

0, otherwise.

Proposition 3. Suppose A and B are multisets of G, then

(i) A ⊆ B =⇒ nA ⊆ nB,
(ii) n(A∩ B) = nA∩ nB,

(iii) n(A∪ B) = nA∪ nB,
(iv) n(A⊕ B) = nA⊕ nB.

Proof. The proof of (i) is trivial. Now, we prove (ii) as follows. Suppose x /∈ nG, then Cn(A∩B)(x) = 0 =

CnA∩nB(x). Again, assume x ∈ nG, then we have

CnA∩nB(x) = CnA(x) ∧ CnB(x)

=
∨

x=ny
CA(y) ∧

∨
x=ny

CB(y)

=
∨

x=ny
[CA(y) ∧ CB(y)]

=
∨

x=ny
CA∩B(y)

= Cn(A∩B)(x).

Hence, n(A∩ B) = nA∩ nB. The proofs of (iii) and (iv) follow directly from Definitions 3, 9 and (ii).

Theorem 3. Suppose f : G → G′ is a homomorphism such that A is multiset of G. Then for any n ∈ N, f (nA) =

n f (A).
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Proof. Suppose x /∈ nG, then C f (nA)(x) = 0 = Cn f (A)(x). Again, suppose we have x ∈ nG. If z ∈ G′ and
z = f (x), then

C f (nA)(z) =
∨

z= f (x)

CnA(x) =
∨

z= f (x)

∨
x=nw

CA(w)

=
∨

z= f (x), x=nw

CA(w) =
∨

z= f (nw)

CA(w)

=
∨

z=n f (w)

CA(w) =
∨

z=ny

∨
y= f (w)

CA(w)

=
∨

z= f (nw)

C f (A)(y) = Cn f (A)(z).

Hence, f (nA) = n f (A).

Theorem 4. Let f be a homomorphism from G to G′ such that B is a multiset of G′. Then for any n ∈ N, n f−1(B) ⊆
f−1(nB). Moreover if f is an isomorphism, n f−1(B) = f−1(nB).

Proof. Let x ∈ G. If x /∈ nG, then Cn f−1(B)(x) = 0 ≤ C f−1(nB)(x). If x ∈ nG, then f (x) ∈ nG′. Thus

Cn f−1(B)(x) =
∨

x=nw
C f−1(B)(w) =

∨
x=nw

CB( f (w))

≤
∨

f (x)= f (nw)

CB( f (w)) ≤
∨

f (x)=ny

CB(y)

= CnB(ny) = CnB( f (x))

= C f−1B(x).

Hence, n f−1(B) ⊆ f−1(nB). Suppose f is an isomorphism, then by using the argument in Theorem 3, we
have

C f−1(nB)(x) = C f−1(n( f ( f−1(B))))(x) = C f−1( f (n( f−1(B))))(x)

≤ Cn( f−1(B))(x),

so f−1(nB) ⊆ n f−1(B). Therefore, n f−1(B) = f−1(nB).

Definition 10. Let G be an abelian group. A multigroup A of G is called divisible if CnA(x) = CA(x) ∀x ∈ G
for every positive integer n. Equivalently, if nA = A for every positive integer n.

Example 1. A multigroup of (i) an additive group of rational numbers Q is a divisible multigroup, (ii) a group
of complex roots of unity of degrees pk, k = 1, ..., n, where p is a prime number is a divisible multigroup.

Remark 1. (i) Every multigroup of a divisible group is a divisible commutative multigroup. (ii) If G = Q, then
every divisible multigroup of G has a constant count function over Q− {0}.

Proposition 4. Suppose f : G → G′ is a homomorphism of groups, and A be a divisible multigroup of G. Then, the
homomorphic image of A is a divisible multigroup of G′.

Proof. From Theorem 2, we see that f (A) is a multigroup of G′. Thus, we have n f (A) = f (nA) = f (A), for
every n ∈ N (Theorem 3). Hence, f (A) is a divisible multigroup of G.

Proposition 5. Let f : G → G′ be an isomorphism of groups, and B be a divisible multigroup of G′. Then, the
homomorphic preimage of B is a divisible multigroup of G.

Proof. By synthesizing Theorems 2 and 4, it follows that f−1(B) is a divisible multigroup of G.

Definition 11. A multigroup A of G is called p-divisible if and only if CpkA(x) = CA(x) ∀x ∈ G where k ∈ N
and p is a prime.
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Proposition 6. Let A be a multigroup of G. Then A is divisible if and only if it is p-divisible for every prime p.

Proof. Suppose that A is divisible multigroup of G. Certainly, it is p-divisible since pk ∈ N.
Conversely, assume A is a p-divisible multigroup of G for every prime p. Then for every n ∈ N, we get

n = p1 p2...pm where pi (for i = 1, ..., m) is prime. Thus, nA = (p1 p2...pm)A = βA = A since n = β. So, A is a
divisible multigroup of G.

Theorem 5. Let A be a divisible multigroup of G. Then, the following are divisible subgroups of G:

(i) An, n ∈ N for n ≤ CA(0).
(ii) An, n ∈ N for n ≥ CA(0).

Proof. (i) By Theorem 1, An is a subgroup of G. Let x ∈ An and n ∈ N. Since
∨

ny=x CA(y) = CA(x) ≥ n,
then it follows that y ∈ An with ny = x. Hence, An is a divisible subgroup of G.

(ii) Similarly, An is a subgroup of G by Theorem 1. If x ∈ An and n ∈ N. Then, since
∨

ny=x CA(y) = CA(x) ≤
n, it follows that y ∈ An such that ny = x, and the result follows.

Theorem 6. Let A be a multiset of G bounded by Gn such that CA(0) = n and every An, n ∈ N, is a divisible subgroup
of G. Then A is a divisible multigroup of G.

Proof. From the given hypotheses , it follows that A is a multigroup of G by Theorem 2. Let x ∈ G and
CA(x) = n. Since An is a divisible subgroup of G for every n ∈ N, ∃ y ∈ An such that ny = x, hence
CA(y) ≥ CA(x) = n. But CA(y) ≤ CA(x) since A is a multigroup of G. Hence,

∨
ny=x CA(y) = CnA(x), for

x ∈ nG and so, nA = A.

Corollary 7. If A is a multiset of G bounded by Gn such that CA(0) = n and every An, n ∈ N, is a divisible subgroup
of G. Then A is a divisible multigroup of G.

Proof. Combining Theorems 2 and 6, the result holds.

Theorem 8. Suppose {Ai}i∈I is a family of divisible multigroups of G. Then
⋂

i∈I Ai is a divisible multigroup of G.

Proof. By Proposition 1,
⋂

i∈I Ai is a multigroup of G. Assume that every Ai is divisible, then for x ∈ nG we
get

Cn(
⋂

i∈I Ai)
(x) =

∨
x=ny

∧
i∈I

CAi (y) =
∧
i∈I

∨
x=ny

CAi (y)

=
∧
i∈I

CnAi (x) = C⋂
i∈I(nAi)

(x)

= C⋂
i∈I Ai (x).

If x /∈ nG, then C⋂
i∈I Ai (x) = 0 = Cn(

⋂
i∈I Ai)

(x). Hence,
⋂

i∈I Ai is divisible.

Theorem 9. Suppose {Ai}i∈I is a family of divisible multigroups of G. Then

(i)
⋃

i∈I Ai is a divisible multigroup of G if A1 ⊆ A2 ⊆ ... ⊆ An, i = 1, ..., n.
(ii) Σi∈IAi is a divisible multigroup of G.

Proof. By using Proposition 1 and following the same logic in Theorem 8, the proofs of (i) and (ii) are
established.

Theorem 10. Suppose A is a multigroup of a divisible cyclic group G, then A is constant.
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Proof. Let G =< a > and x ∈ G. Then x = pa, p ∈ N. Suppose that CA(pa) > CA((p + 1)a). Because G is
divisible ∃ y ∈ G such that py = a. But also ∃ q ∈ N such that y = qa, and so

CA(pa) > CA((p + 1)a) = CA((p + 1)py)

= CA((p + 1)pqa) = CA((p + 1)q(pa))

≥ CA(pa) ∧ CA(pa) ∧ ...∧ CA(pa)

= CA(pa),

which is a contradiction.
Also, if CA((p + 1)a) > CA(pa). Then ∃ z ∈ G such that (p + 1)z = a, z = ra, r ∈ N since G is divisible.

Thus

CA((p + 1)a) > CA(pa) = CA(p(p + 1)ra) = CA(pr(p + 1)a)

≥ CA((p + 1)a) ∧ CA((p + 1)a) ∧ ...∧ CA((p + 1)a)

= CA((p + 1)a),

which is also a contradiction. Hence, CA((p + 1)a) = CA(pa). Since x is arbitrary, if x = a, then

CA(a) = CA(2a) = CA(3a) = ...,

and so A is a constant multigroup of a divisible cyclic group G.

3.2. Some properties of pure multigroups

Recall that a subgroup H of a group G is called pure if nH = H ∩ nG, for every positive integer n. Now,
we extend the concept to multigroup of G as follows.

Definition 12. Let A and B be multigroups of G such that A ⊆ B. Then A is a pure multigroup of G if
nA = A∩ nB for every n ∈ N. Equivalently, CnA(x) = CA(x) ∧ CnB(x) ∀x ∈ G for every n ∈ N.

Remark 2. Suppose A, B and C are multigroups of G such that A and B are contained in C. If A and B are pure,
then A∩ B and A∪ B are pure multigroups of G since n(A∩ B) = (A∩ B) ∩ nC and n(A∪ B) = (A∪ B) ∩ nC.

Definition 13. Let A and B be multigroups of G such that A ⊆ B. Then A is p-pure if prA = A ∩ prB for every
r ∈ N and p is prime. Equivalently, if CprA(x) = CA(x) ∧ CprB(x) ∀x ∈ G for every r ∈ N and p is prime.

In fact, every p-pure multigroup of a p-divisible group is p-divisible.

Proposition 7. Suppose f : G → G′ is an isomorphism of divisible groups, A, C are multigroups of G and B, D are
multigroups of G′ such that A ⊆ C and B ⊆ D. If A and B are pure multigroups of G and G′, respectively then

(i) f (A) is a pure multigroup of G′,
(ii) f−1(B) is a pure multigroup of G.

Proof. Let x, y ∈ G and w, z ∈ G′ such that f (x, y) = w, z. Since G, G′ are divisible groups for every n ∈ N,
∃ y ∈ G and z ∈ G′ such that ny = x, nz = w. From Proposition 2, it follows that f (A) and f−1(B) are
multigroups of G and G′, respectively. Assume that C and D are constant, then by Theorems 3 and 4, we
deduce that, for any w ∈ G′

C f (nA)(w) = Cn f (A)(w) = C f (A)(w) ∧ Cn f (C)(w)

= C f (A)(w) ∧
∨

w=nz
C f (C)(z)

= C f (A)(w)
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and

C f−1(nB)(x) = Cn f−1(B)(x) = C f−1(B)(x) ∧ Cn f−1(D)(x)

= C f−1(B)(x) ∧
∨

x=ny
C f−1(D)(y)

= C f−1(B)(x).

Hence, the results.

Theorem 11. Let {Ai}i∈I and {Bj}j∈J be families of multigroups of G such that {Ai}i∈I ⊆ {Bj}j∈J and {Bj}j∈J is
constant. If {Ai}i∈I is pure, then

⋂
i∈I Ai is a pure multigroup of G.

Proof. Certainly,
⋂

i∈I Ai is a multigroup of G by Proposition 1. If every Ai is pure, then suppose x ∈ nG, we
have

Cn(
⋂

i∈I Ai)
(x) = C(

⋂
i∈I Ai)∩n(

⋂
j∈J Bj)

(x)

=
∧
i∈I

CMAi (x) ∧
∨

x=ny

∧
j∈J

CBj(y)

=
∧
i∈I

CAi (x) ∧
∧
j∈J

∨
x=ny

CBj(y)

=
∧
i∈I

CAi (x) = C⋂
i∈I Ai (x).

Again, suppose x /∈ nG, then

Cn(
⋂

i∈I Ai)
(x) = C(

⋂
i∈I Ai)∩n(

⋂
j∈J Bj)

(x) = 0 = C⋂
i∈I Ai (x).

Hence,
⋂

i∈I Ai is a pure multigroup of G.

Theorem 12. Let {Ai}i∈I and {Bj}j∈J be families of multigroups of G such that {Bj}j∈J is constant and contains
{Ai}i∈I . If {Ai}i∈I is pure, then

(i)
⋃

i∈I Ai is a pure multigroup of G for A1 ⊆ A2 ⊆ ... ⊆ An, i = 1, ..., n.
(ii) Σi∈IAi is a pure multigroup of G.

Proof. By synthesizing Proposition 1 and following the same argument in Theorem 11, the proofs of (i) and
(ii) are established.

Theorem 13. Suppose A and B are multigroups of G such that A ⊆ B and B is constant. Then A is pure if and only if
A is a divisible multigroup of G.

Proof. Suppose A is a pure multigroup of G. Then nA = A∩ nB for n ∈ N. Certainly, A∩ nB = A because

CA(x) ∧ CnB(x) = CA(x) ∧
∨

ny=x
CB(y)

= CA(x) ∀x ∈ X.

Thus, nA = A for n ∈ N, and hence A is a divisible multigroup of G.
Conversely, assume A is a divisible multigroup of G. Then nA = A for n ∈ N. Since A∩ nB = A, we have

nA = A∩ nB n ∈ N, and so A is a pure multigroup of G.

Proposition 8. Suppose A and B be multigroups of G such that A ⊆ B and B is constant. Then A is pure if and only if
it is p-pure for every prime p.

Proof. Similar to Proposition 6.
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Proposition 9. Let A and B be multigroups of G such that A ⊆ B and B is constant. If A is a pure multigroup of G,
then An, n ∈ N is a pure subgroup of G for n ≤ CA(0) and An, n ∈ N is a pure subgroup of G for n ≥ CA(0).

Proof. Similar to Theorem 5.

Proposition 10. Suppose A and B are multisets of G bounded by Gn such that A ⊆ B and B is constant. If CA(0) = n
and every An, n ∈ N, is a pure subgroup of G, then A is a pure multigroup of G.

Proof. Similar to Theorem 6.

Corollary 14. Let A and B be multisets of G bounded by Gn such that A ⊆ B and B is constant. If CA(0) = n and
every An, n ∈ N, is a pure subgroup of G, then A is a pure multigroup of G.

Proof. Similar to Corollary 7.

4. Conclusion

Multigroup theory is an application of group theory to multisets. Numerous analog ideas of group
theory have been extended to multigroups. In this paper, we have introduced the concepts of divisible
and pure multigroups with a number of some related results. The interconnection between divisible and
pure multigroups and that of divisible and pure groups were established with the aid of multigroup cuts.
Additional characterizations of divisible and pure fuzzy multigroups could be explored in future research.
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