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Abstract
Especially in metrology and geodesy, but also in many other disciplines, the solution of
overdetermined linear systems of the form Ax≈ b with individual uncertainties not only in b but
also in A is an important task. The problem is known in literature as weighted total least
squares. In the most general case, correlations between the elements of [A,b] exist as well. The
problem becomes more complicated and can—except for special cases—only be solved
numerically. While the formulation of this problem and even its solution is straightforward, its
implementation—when the focus is on reliability and computational costs—is not. In this paper,
a robust, fast, and universal method for computing the solution of such linear systems as well as
their covariance matrix is presented. The results were confirmed by applying the method to
several special cases for which an analytical or numerical solution is available. If individual
coefficients can be considered to be free of errors, this can be taken into account in a simple
way. An implementation of the code in MATLAB is provided.

Supplementary material for this article is available online

Keywords: weighted total least squares, generalized total least squares, mixed total least squares,
total least squares, linear systems, error propagation, covariance matrix

1. Introduction

In our laboratory at the National Metrology Institute in
Germany, we work in the field of Mueller matrix ellipso-
metry, an optical method for the investigation of structured
surfaces and thin films. While evaluating the raw data (incl.
error propagation), we encountered a mathematical problem
whose technical solution we think could also be relevant for
other experiments.

Original content from this workmay be used under the terms
of the Creative Commons Attribution 4.0 licence. Any fur-

ther distribution of this work must maintain attribution to the author(s) and the
title of the work, journal citation and DOI.

It is a classic problem: let A ∈ Rm×n with m> n be a
coefficient matrix with full column-rank. b ∈ Rm×1 and x ∈
Rn×1 are column vectors. Typically, the rows of A and b res-
ult from m different measurements performed under different
configurations or conditions. x is unknown; it will be determ-
ined from

Ax≈ b. (1)

The solution of this linear system is the central topic of this
paper. The solution, its uncertainty, and also the complexity
of its calculation strongly depend on the coefficients that are
subject to uncertainties, and how these uncertainties are cor-
related with each other. One searches, therefore, for the best-
fit solution x, considering the covariances of the matrix [A,b]
and wants to know how these input covariances propagate to
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x. LetW be a weight matrix, defined as the inverse of a covari-
ance matrix Σ, which, in turn, describes all uncertainties and
mutual correlations of the elements in [A,b]

W(m·(n+1)×m·(n+1)) =Σ−1
[A,b]. (2)

With the vectorization of a matrix performed column-wise

a= vec(A) =

 A1,1
...

Am,n

=

 a1
...

am·n

 , (3)

the problem can be formulated as an optimization problem:

min
x
SEW (x) (4)

with

SEW =

∥∥∥∥( da
db

)∥∥∥∥2
W
=

(
da
db

)T

W
(

da
db

)
(5)

s.t.

(A+ dA)x= b+ db (6)

(T denotes the matrix transpose operation; SE, squared error).
Or, with the equality constraints eliminated:

SEW (x) =
(

da
(A+ dA)x− b

)T

W
(

da
(A+ dA)x− b

)
.

(7)

This is the most general formulation of the problem. Depend-
ing on the structure ofW, which can be partitioned as

W=

(
WA WT

Ab
WAb Wb

)
(8)

many different solutions were found.

1.1. Cases with analytical solutions

Analytical solutions were found for

• LS (least squares):Wb ∼ I,WA = 0, andWAb = 0.
• WLS (weighted least squares): Wb ∼Σ−1

b , WA = 0, and
WAb = 0.

• TLS (total least squares):W∼ I.
• MTLS or LS-TLS (mixed total least squares): WA ∼
diag([0i,1j]), Wb ∼ I, and WAb = 0 with i= 1, . . . ,m · n1,
j= m · (n1 + 1) , . . . ,m · n, and n1 the subset of columns in
A, which are assumed to be free of errors.

• GTLS (generalized total least squares): W∼(
P((n+1)×(n+1))
C ⊗P(m×m)

R

)−1
.

Here, I is the identity matrix, ⊗ the Kronecker product, and
diag(v) generates a diagonal matrix from a vector v. An
overview of the methods is given in [1]. A large collection of
references can be found in [2].

In the appendix, we provide in brief the formulas for some
analytical solutions.

1.2. Cases with numerical solutions only

For other cases, however, only numerical solutions are avail-
able. These were often developed in the field of geodesy.

Premoli and Rastello have dealt with the element-wise
weighted total least squares [3]. This method allows independ-
ent weights for the elements of [A,b] but no correlations i.e.
W is a diagonal matrix with independent diagonal elements.
Later, this method was taken up by further authors and adap-
ted for special applications [4–6].

For the case of no correlation between A and b (i.e.WAb =
0), Schaffrin and Wieser [7] solved the problem for a cer-
tain structure of WA: it must be a Kronecker product of a
m×m with a n× nmatrix. Mahboub [8] succeeded in remov-
ing this restriction. Amiri-Simkooei and Jazaeri showed that
this weighted total least squares (WTLS) problem is an exten-
sion of WLS problem [9].

With the abovemethods, it is possible to fit a straight line on
2D data. This is what Krystek andAnton did in [10]. Their clou
is that they transferred the problem to polar coordinates and
reduced it to only one free parameter, which makes their solu-
tion very robust. They later modified their method and allowed
mutual correlations [11]. Here,WAb now comes into play and
is no longer equal to 0. In addition, in both implementations,
they also provided a numerical estimation for the covariance
matrix of the solution.

Snow [12] and Zhou et al [13] provided a solution for the
case of a full weight matrix W. Later, Zhou and Fang [14]
also provided a solution for the mixed case (WLS-WTLS), in
which some columns of A are assumed to be free of errors.

Despite the large number of different methods, we must
conclude that our problem1 (and certainly other problems as
well) cannot be solved by any of the abovemethods on account
of individual limitations. We have the following requirements:

(1) W must be allowed to be a full matrix i.e. correlations
between A and b must be allowed.

(2) In some of ourmmeasurements, some non-error-free com-
ponents are not involved. This means it must be possible
to exclude individual elements from the WTLS optimiza-
tion and not only complete columns, like in WLS-WTLS
or MTLS.

(3) The method should be fast since many modern problems
in metrological practice deal with large matrices, and often
a data preprocessing is required during a measurement to
control the experimental parameters for the next measure-
ment step1.

(4) To allow an error-propagation analysis, a covariance mat-
rix for the best fitting solution x must be provided.

1 A problem in optics: the determination of Mueller matrix elements and their
covariance from uncertain Fourier coefficients achievedwith imperfect optical
components [15]. In this application, a 140× 15 matrix problem must be
solved in less than 3 s.
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The last point especially is of the utmost importance in met-
rology. In our application, the solution of the problem is an
intermediate step; in terms of traceability, we must be able to
determine the influence of input uncertainties on the final res-
ult and its uncertainty in accordance with the ‘Guide to the
expression of uncertainty in measurement’ [16].

2. Numerical solution for the general case

In the general case, the weight matrixW has no special struc-
ture. But to represent ametric space, it must, of course, be sym-
metric and positive definite. If it is only positive semi-definite,
the problem can be reformulated to only consider the relevant
dimensions.

The task is now to solve equation (4). The unknowns are x
and dA. For a given x, the necessary condition for an optimal
dA is

∂

∂dai=1...m·n
SEW = 0. (9)

This is a linear system, with m · n equations for the m · n
unknowns of da. After exploiting and applying

A(m×n)x(n×1) =
(
xT ⊗ I(m×m)

)
vec(A) (10)

it can be converted to

VTWVda= VTWu (11)

with

V=

(
I(m·n×m·n)

xT ⊗ I(m×m)

)
(12)

and

u=−
(

0(m·n×1)

Ax− b

)
. (13)

da in equation (11) can be solved for a given x in MATLAB
with the so-called backslash operator ‘\’ as

da=
(
VTWV

)
\(VTWu). (14)

With da reshaped to dA, one gets SEW from equation (7).
SEW then can be used as merit function with a solver of
your choice to find the optimal vector x. However, in this
form, the optimization is very expensive in terms of computing
time and memory requirements. We will address this issue in
section 3.

2.1. Reduction to requested elements

If individual elements of da and/or db are to be excluded from
optimization (i.e. it is assumed to be free of errors), this can be
done very easily: one has to just eliminate the regarding rows
and columns in the matrices and vectors in equation (11).

For this purpose, let dAi be given as a user-defined Boolean
array, indicating the matrix elements of dA to be optimized.
dbi is accordingly defined. Furthermore, elements of dAi and
dbi shall be set to false by default, if the according diagonal
element of the weight matrixW equals 0. Then, equation (11)
has to be solved for the subset dadai of da with

Vred = V[dai;dbi],dai

Wred =W[dai;dbi],[dai;dbi]

ured =−
(

0dai,1
[Ax− b]dbi

)
(15)

(‘red’ = reduced; logical indexing is used here: [T, F,
T,…]→[1, 3,…]). Of course, db has to be again calculated
from equation (6) taking care that false elements of dAi lead
to zeros at the respective positions in dA.
SEW (x) can then be calculated from dadai, dbdbi, andWred.

Note that this technique is more general than MTLS or WLS-
WTLS since it allows one to assume individual elements of
[A,b] to be free of errors and not only full columns.

3. Performance and robustness

In the previous chapter, the mathematical solution of the prob-
lem was given. We will now cover some technical and pro-
gramming aspects to make it fast and reliable. The method was
implemented in MATLAB. Nevertheless, most of the follow-
ing aspects can certainly be transferred to other programming
languages.

3.1. Recommended optimizer

Since the merit function (equation (7)) gives back a scalar
positive value—which is the sum of SEs in the metric
space defined by W2—any multivariate optimizer should be
applicable.

We recommend MATLAB’s optimizer lsqnonlin,
which is part of the optimization toolbox. Its spe-
cial feature: it expects the merit function to provide
an error vector F instead of the sum of squared
errors

∑
F2
i . Here, such a vector can easily be

defined:

F= RW

[
da
db

]
(16)

with RT
WRW =W is the Cholesky decomposition of W.

It is obvious that F contains more details on the prob-
lem than SEW =

∑
F2
i . This improves convergence and

therefore performance. lsqnonlin uses the trust-region-
reflective algorithm by default and alternatively the Leven-
berg–Marquardt. It is a gradient-based local solver. If your

2 Though the subscript ‘red’ is skipped from now on, only the reduced ver-
sions of the regarding matrices and vectors are used.W (=Wred) is symmetric
and positive definite.
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problem is difficult (i.e. many local minima), you may need
to use a global solver (like differential evolution or particle
swarm). In that case, there is nothing left but to use

∑
F2
i

instead of F.

3.2. Initial values for optimization

For good conditioned problems, it is easy and cheap to
provide a good guess as the initial value for the optimiza-
tion from the LS solution (equation (40)) or the WLS solu-
tion (equation (41)). If the problem is close to the TLS prob-
lem, one should, of course, start with its solution as the initial
guess (equation(43)). However, GTLS is the analytical solu-
tion that provides the widest possible consideration of a gen-
eral weight matrix W and should, therefore, be preferred in
general.

To do so, first, the necessary matrices PC and PR have to be
derived as the solution from the minimization problem:

min
∥∥W−1 −PC⊗PR

∥∥2
F

(17)

(∥·∥F denotes the Frobenius norm). This is known as the
nearest Kronecker product problem and has an analytical
solution [17].

Let R
(
W−1) be a certain rearrangement3 ofW−1 depend-

ing on the dimensions of PC and PR, i.e. (n+ 1)× (n+ 1) and
m×m. From its singular value decomposition

Udiag(σ)VT =R
(
W−1) (18)

PC and PR can be found from vec(PC) = σ1U:,1 and
vec(PR) = V:,1 respectively.

It is important to note that only the product,PC⊗PR can be
uniquely determined.PC andPR are unique except for constant
scalar factors s and 1/s respectively. Furthermore, since W is
symmetric and positive definite, PC and PR are symmetric, and
either both positive or both negative definite. In the latter case,
they can be made positive definite with s=−1. The absolute
value of s has no impact on the GTLS solution, which then
gives the best possible analytical guess as initial values for the
subsequent optimization.

3.3. Rewriting equation (11)

The essential part of the solution given in the previous chapter
is equation (11). The terms of this formal expression can be
rewritten in amuchmorememory- (and, hence, time-) efficient
way as

VTWV=WA+ x⊗WAb+(x⊗WAb)
T
+ xxT ⊗Wb (19)

and

VTWu=−
(
WT

Ab+ x⊗Wb
)
· (Ax− b) . (20)

3 The general MATLAB code for such a rearrangement is:
reshape (permute (reshape (A,m2,m1,n2,n1), [2,4,1,3]), m1∗n1,
m2∗n2).

3.4. Robust solution of equation (11)

Since W is symmetric, and positive definite, the same is true
for the coefficient matrix VTWV . Because of that, equation
(11) can be solved efficiently and robust. Let R with

RTR= VTWV (21)

be the Cholesky decomposition of the coefficient matrix.
Because of R’s triangular shape, equation (11) can be solved
with a forward-, followed by a backward-substitution. Again,
with MATLAB’s backslash operator, one can write these two
steps as:

da= R\(RT\VTWu). (22)

This solution looks more complicated than the one given in
equation (14). But, actually, it is not; there are two reasons to
solve da with equation (22) instead of equation (14).

(a) Applying the backslash-operator causes MATLAB to
check the coefficient matrix for certain properties. If it is
of triangular shape, then the substitution technique is dir-
ectly applied, and all other tests are skipped. On the other
hand, checking whether the Cholesky solver is applic-
able to equation (14) (which we already know) costs
three more tests on the input matrix, which can be saved
here.

(b) We explicitly will need the matrix R in the further
process.

3.5. Calculation of the Jacobian matrix

As stated earlier, MATLAB’s lsqnonlin is gradient-based.
This means that after each calculation of a candidate solution,
the Jacobian matrix is calculated to estimate the candidate of
the subsequent iteration. Since the accuracy requirements on
the Jacobian are relaxed, it is sufficient to estimate it from for-
ward finite differences, which can be obtained after n explicit
calls of the vectorial merit function (equation (16)) i.e.:

J=
(
∂F
∂xi

)
i=1,..,n

≈
(
F(x+∆xi)−F(x)

∆xi

)
i=1,..,n

. (23)

The vector ∆xi has zero elements, barring the ith element,
which equals ∆xi.

Of course, its calculation can be very time-consuming even
after implementing the improvements suggested in the last
two sections. The most costly one is the calculation of R,

the Cholesky decomposition. It requires ∼O
(
(m · n)3

)
oper-

ations. Hence, with the forward finite-difference estimation of
the Jacobian, n additional Cholesky decompositions would be

necessary (∼O
(
(m · n)3 · n

)
).

But this can be avoided. MATLAB’s lsqnonlin can also
be supported with an externally provided Jacobian. We will

now calculate it with only ∼O
(
(m · n)2 · n

)
operations.
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The finite difference method will also be used now. At first,
one may try to find a cheap solution to update R when an
element of x updates slightly from xi → xi+∆xi. Only one
method is known for this: the rank-one update. Unfortunately,
the conditions for applicability are not fulfilled for this here
because, with equation (19), it can be shown that an x-update
causes a rank-m update for n = 1 and a rank-2m update for
n > 1.

Here is the alternative solution:
first, let us define shortcuts for the expressions in equation (11)
(or equations (19) and (20))

Y(x) : = VTWV

z(x) : = VTWu. (24)

Suppose we had updated x→ x+∆xi. Formally, da(x+∆xi)
can then be calculated as

da(x+∆xi) = Y−1 (x+∆xi)z(x+∆xi) . (25)

With

dY(∆xi) := Y(x+∆xi)−Y(x) (26)

dz(∆xi) := z(x+∆xi)− z(x) (27)

the following is surely true:

da(x+∆xi) = (Y(x)+ dY(∆xi))
−1

(z(x)+ dz(∆xi)) .
(28)

On taking a look at equation (19), it is revealed that dY(∆xi)
is—related to the spectral radius—surely small compared to
Y(x) (keep in mind that x= 0 is never a solution of your prob-
lem). This allows a first-order Taylor approximation for the
matrix inverse:

da(x+∆xi)≈
(
Y−1 (x)−Y−1 (x) dY(∆xi) Y

−1 (x)
)

× (z(x)+ dz(∆xi)) . (29)

With the shortcut

ci := Y−1 (x)dz(∆xi) = R\(RT\dz(∆xi)) (30)

one gets

∆da(∆xi) : = da(x+∆xi)− da(x)

≈ ci−Y−1 (x) dY(∆xi) (da(x)+ ci) . (31)

And finally

∆da(∆xi)≈ ci−R\
(
RT\ [dY(∆xi) (da(x)+ ci)]

)
. (32)

Note: it was not necessary to explicitly calculate the inverse
of Y. One can now reshape ∆da(∆xi) to ∆dA(∆xi) and
calculate

∆db(∆xi) = [A+ dA+∆dA(∆xi)] (x+∆xi)

− (b+ db) . (33)

The Jacobian can then be estimated as

J≈
(
RW

[
∆da(∆xi)
∆db(∆xi)

]
/∆xi

)
i=1,..,n

. (34)

Remark: for this forward difference approximation of the Jac-
obian, a step size of ∆xi = sign(xi)

√
ε(1+ |xi|) is used with

the constant ε= 2−52, which is the distance from 1.0 to the
next larger double-precision number, and sign(x) = 1 for x⩾
0 and sign(x) =−1 for x< 0. This definition of ∆xi is based
on the default definition for this approximation in MATLAB.

In sum, these five steps carried out in this chapter
drastically accelerate the optimization. If one has a sup-
ported graphics processing unit (GPU) and MATLAB’s
parallel-computing toolbox, one can even increase the
speed further, since many matrix operations used here
can benefit from the parallel organization of a GPU. For
this purpose, only the input matrices must be defined
as gpuArrays. A parallel distribution to several cores
of the CPU—on the other hand—cannot be sensibly
implemented, as it has no positive effect on account of
overhead.

We finish this chapter with some numbers on the per-
formance: table 1 shows a small benchmark for two different
machines with or without GPU support and with or without
the Jacobian provided. In our application, the problem with
A(140×15) is typically good conditioned, so a few ten iterations
will suffice. A complete optimization, including the calcula-
tion of the covariance matrix (see next chapter) of the solution,
is, therefore, finished after 2.5 s at the latest. Since we typic-
ally measure data which lead to several thousand such prob-
lems, it makes a big difference in terms of applicability and
feasibility whether their solution takes a week or only a few
hours.

4. Covariance matrix of the solution

As a metrologist, the writer is not only interested in the final
result x but also in its statistical uncertainty. Therefore, the
calculation of the covariance matrix Σx was also implemen-
ted. One oft-used estimation of the covariance matrix calcu-
lated from the Jacobian at the optimumof a least-squares-merit
function is

Σ(J)
x :=

(
JTJ

)−1
. (35)

Or, if the weight matrix is known only up to an unknown
factor:

Σ ′(J)
x :=

SEW
m− n

(
JTJ

)−1
. (36)
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Table 1. Comparison of computation times for a problem with A(140×15) and a full weight matrixW on different machines. All tests have
been performed with MATLAB R2020b. CUDA 11.2 was used for the tests with GPU support.

Iteration time

Without With

Jacobian provided

CPU1 only 2500 ms 210 ms
Intel i5 3470
CPU1 + GPU1 1500 ms 103 ms
Nvidia GeForce GTX 1050 Ti
CPU2 only 1500 ms 125 ms
Intel Xeon E5-2667 v3
CPU2 + GPU2 230 ms 22 ms
Nvidia Tesla V100

Since all values are available at the end of the optimization, it
can be directly calculated. But while this estimation might be
fine for low-dimensional problems it gets worse with increas-
ing n.

A more reliable approximation of the covariance matrix is
based on the Hessian matrix H:

Σ(H)
x := 2H−1. (37)

Or, again, if the weights are only known relative to each other:

Σ ′(H)
x :=

SEW
m− n

· 2H−1. (38)

The technique applied to determine the Jacobian can also be
used to calculate the Hessian. Its elements are now calculated
with the central finite differences approximation. This is more
costly than the forward finite differences approximation but
more accurate:

H≈
( 1
4∆xi∆xj

[
SEW(x+∆xi+∆xj)

− SEW(x+∆xi−∆xj)− SEW(x−∆xi+∆xj)

+ SEW(x−∆xi−∆xj)
])

i,j=1,..,n
. (39)

Here, a step size of∆xi = sign(xi)ε1/3 (1+ |xi|) is used. Since
the Hessian is symmetric, it is sufficient to calculate the n ·
(n+ 1)/2 independent elements only. But as can been seen
from equation (39), it requires four explicit calculations of
SEW for each element. Hence, the effort is already consider-
able. Therefore, the calculation of the covariance matrix was
implemented as optional output.

The same is true for the condition number of VTWV. It
might give you some helpful information. But, of course, it
requires an additional singular value decomposition.

Before starting an optimization, one might also be inter-
ested in the condition number or the efficiency [18] of A.

5. Applications

The method was implemented in MATLAB as a func-
tion, which we named cwtls (correlated weights total least
squares). It outputs x as solution of equation (4) and—among
others—its covariance Σ ′

x, according to equation (38) (to be
compatible with other MATLAB functions). From additional
output parameters, the covariance can be calculated, according
to equation (37).

Table 2 shows some application examples for cwtls and
a comparison with—mostly analytical—alternatives. If the
optimization has converged to the global minimum (which is
the case for the most real-world problems, i.e. not artificially
ill-conditioned, and with reasonable starting values), then,
in each case, the cwtls solution agrees with the alternative
solution—of course—up to the tolerance set as the stopping
criterion of the optimization. Also, the covariance matrices
provided by cwtls agreed with their alternative calculations.
In addition, they were validated with those resulting from the
numerically determined Hessian matrix at the optimum. For
this purpose, the code from [19] was used.

Since, in the literature, the definitions of the covariance
matrices are sometimes somewhat vague or imprecise, the cor-
responding formulas used here are also given.

Examples of numerical applications are given in the sup-
plementary material (available online at stacks.iop.org/MST/
33/015017/mmedia) to document agreement of cwtls results
with the alternative solutions shown in table 2.

Table 2 can also be used as a guide, demonstrating how to
prepare the inputs to solve a problem with cwtls.

A (perhaps trivial) remark for the case that an analytical
solution exists: if one has absolute knowledge of the weight
matrix (i.e. there is no need to rescale Σx with mse), then one
can calculate Σx—according to the formulas in the table—
without (or before) knowing x. This should be kept in mind
when designing an experiment that focuses on low uncertain-
ties for x.

Please note: cwtls is not intended to replace existing and
specialized solutions. Rather, it can be used when specialized
solutions do not exist.

6

https://stacks.iop.org/MST/33/015017/mmedia
https://stacks.iop.org/MST/33/015017/mmedia


Meas. Sci. Technol. 33 (2022) 015017 M Wurm

Ta
b
le

2.
A
pp
lic
at
io
n
ex
am

pl
es

fo
r

cw
tl

s.
H
er
e,
so
m
e
sp
ec
ia
lc
as
es

fo
r
w
hi
ch

al
te
rn
at
iv
e—

m
os
tly

an
al
yt
ic
al
—
so
lu
tio

ns
ex
is
ta
re

sh
ow

n.
In

ea
ch

ca
se
,t
he

so
lu
tio

ns
an
d
co
va
ri
an
ce

m
at
ri
ce
s

pr
ov
id
ed

ag
re
e
w
ith

th
e
on
e
fo
un
d
by

[x
,∼

,∼
,∼

,∼
,∼

,∼
,C

ov
]

=
cw

tl
s(

A,
xi

ni
,b

,W
,d

Ai
,d

bi
)
(x

in
i,
an

in
iti
al
gu
es
s;
db
i,
al
w
ay
s
tr
ue
).
m
se

=
SE

W
m
−
n
.

W
A

b
dA

i
O
ne

of
(p
os
si
bl
y)

se
ve
ra
l

al
te
rn
at
iv
e
so
lu
tio

ns
(M

A
T
L
A
B

co
m
m
an
d)

Σ
′ x
,c
ov
ar
ia
nc
e
(e
ith

er
no
m
in
al
or

M
A
T
L
A
B
ex
pr
es
si
on

to
ca
lc
ul
at
e
it

fr
om

ou
tp
ut
s)

R
ef
er
en
ce

W
A

W
b

(T
ru
e,
fa
ls
e)

Fo
ot
no
te
nu

m
./a

na
.

L
ea
st
sq
ua

re
s

0
I

A
b

F
x=

A\
b

m
se

·( AT
A
) −1

a
Fi
tti
ng

a
st
ra
ig
ht

lin
e
th
ro
ug

h
th
e
or
ig
in
,o
nl
y
un
if
or
m

er
ro
rs
in
y

0
I

x i
n

y i
n

F
x=

A\
b

m
se

·( AT
A
) −1

a
Fi
tti
ng

a
st
ra
ig
ht

lin
e
th
ro
ug

h
th
e
or
ig
in
,o
nl
y
er
ro
rs
in
y,
un
co
rr
el
at
ed

w
ei
gh
ts

0
di
ag

(w
)

x i
n

y i
n

F
[x

,∼
,∼

,C
ov

]=
ls

co
v(

A,
b,

w)
m
se

·( AT
di
ag

(w
)
A
) −1

a
Fi
tti
ng

a
st
ra
ig
ht

lin
e
th
ro
ug

h
th
e
or
ig
in
,o
nl
y
er
ro
rs
in
y,
co
rr
el
at
ed

w
ei
gh
ts

0
V

−
1

x i
n

y i
n

F
[x

,∼
,∼

,C
ov

]=
ls

co
v(

A,
b,

V)
m
se

·( AT
V

−
1
A
) −1

a
Fi
tti
ng

a
st
ra
ig
ht

lin
e
th
ro
ug

h
fix

ed
po

in
t,
er
ro
rs
in
x
an
d
y,
un
co
rr
el
at
ed

w
ei
gh
ts

[ 2
0]

di
ag

( [
ux uy

] −2)
x i
n
−
x f

ix
y i
n
−
y f
ix

T
[x

,∼
,∼

,∼
,S

E,
C]

=
wt

ls
_l

in
e_

or
ig

in
SE

/(
m-

n)
∗
C

n
(x

in
-x

fi
x,

yi
n-

yf
ix

,u
x,

uy
)

Fi
tti
ng

a
st
ra
ig
ht

lin
e,
on
ly

un
if
or
m

er
ro
rs
in

y
0

I
[x

in
,1
]

y i
n

[F
,F
]

[x
,S

]=
po

ly
fi

t(
xi

n,
yi

n,
1)

(i
nv

(S
.R

)∗
in

v(
S.

R)
′ )

∗
S.

no
rm

r.
∧

2/
S.

df
a

Fi
tti
ng

a
st
ra
ig
ht

lin
e,
on
ly

er
ro
rs
in
y,
co
rr
el
at
ed

w
ei
gh
ts

0
V

−
1

[x
in
,1
]

y i
n

[F
,F
]

[x
,∼

,∼
,C

ov
]=

ls
co

v(
A,

b,
V)

m
se

·( AT
V

−
1
A
) −1

a
To

ta
ll
ea
st
sq
ua

re
s

I
A

b
T

x=
tl

s(
[A

,b
])

m
se

·( AT
A
−
σ
2 n+

1
I) − 1

a,
a

M
ix
ed

to
ta
ll
ea
st
sq
ua

re
s

[ 2
1]

I
A

b
[F

:,
1:
n1
,T

:,
1:
n−

n1
]

x=
mt

ls
(A

(:
,1

:n
1)

,
Se
e
[2
2]

a
A(

:,
n1

+
1:

en
d)

,b
)

Fi
tti
ng

a
st
ra
ig
ht

lin
e,
un
if
or
m

er
ro
rs
in
x
an
d
y

[2
1]

I
[x

in
,1
]

y i
n

[T
,F
]

x(
[2

,1
])

=
mt

ls
(A

(:
,2

),
A(

:,
1)

,b
)

Se
e
[2
2]

a
[x

(1
),

x(
2)

,∼
,∼

,S
E,

C]
=

…
[C

(1
),

C(
3)

;C
(3

),
C(

2)
]∗

SE
/(

m-
n)

[1
0,

23
]

wt
ls

_l
in

e(
xi

n,
yi

n,
…

n
on

es
(m

,1
),

on
es

(m
,1

))
(C
on
tin

ue
d.
)

7



Meas. Sci. Technol. 33 (2022) 015017 M Wurm

Ta
b
le

2.
(C
on
tin

ue
d.
)

W
A

b
dA

i
O
ne

of
(p
os
si
bl
y)

se
ve
ra
l

al
te
rn
at
iv
e
so
lu
tio

ns
(M

A
T
L
A
B

co
m
m
an
d)

Σ
′ x
,c
ov
ar
ia
nc
e
(e
ith

er
no
m
in
al
or

M
A
T
L
A
B
ex
pr
es
si
on

to
ca
lc
ul
at
e
it

fr
om

ou
tp
ut
s)

R
ef
er
en
ce

W
A

W
b

(T
ru
e,
fa
ls
e)

Fo
ot
no
te
nu

m
./a

na
.

Fi
tti
ng

a
st
ra
ig
ht

lin
e,
er
ro
rs
in
x
an
d
y,
un
co
rr
el
at
ed

w
ei
gh
ts

[1
0,

23
]

di
ag

   ux 1 uy

 −
2
  

[x
in
,1
]

y i
n

[T
,F
]

[x
(1

),
x(

2)
,∼

,∼
,S

E,
C]

=
…

[C
(1

),
C(

3)
;C

(3
),

C(
2)

]∗
SE

/(
m-

n)
n

wt
ls

_l
in

e(
xi

n,
yi

n,
ux

,u
y)

Fi
tti
ng

a
st
ra
ig
ht

lin
e,
er
ro
rs
in
x
an
d
y,
m
ut
ua
lly

co
rr
el
at
ed

w
ei
gh
ts

[ 1
1,

24
]

W
[x

in
,1
]

y i
n

[T
,F
]

[x
(1

),
x(

2)
,∼

,∼
,S

E,
C]

=
wt

ls
c_

li
ne

(x
in

,y
in

,s
(1

:m
),

s(
m+

1:
en

d)
,r

ho
)

[C
(1

),
C(

3)
;C

(3
),

C(
2)

]∗
SE

/(
m-

n)
b,
n

Fi
tti
ng

a
pl
an

e,
on
ly

un
if
or
m

er
ro
rs
in
z

0
I

[x
in
,y

in
,1
]

z i
n

[F
,F
,F
]

x=
A\

b
m
se

·( AT
A
) −1

a
Fi
tti
ng

a
pl
an

e,
un
if
or
m

er
ro
rs
in
x,
y,
z

[2
1,

25
]

I
[x

in
,y

in
,1
]

z i
n

[T
,T
,F
]

x(
[3

,1
,2

])
=

mt
ls

(A
(:

,3
),

A(
:,

1:
2)

,b
)

Se
e
[2
2]

a
G
en
er
al
iz
ed

to
ta
ll
ea
st
sq
ua

re
s,
co
lu
m
n-
w
is
e
co
rr
el
at
io
n

[2
1,

25
]

(P
C
⊗
I)

−
1

A
b

T
x=

gt
ls

([
A,

b]
,P

c,
I)

Se
e
fo
ot
no
te

c,
a

G
en
er
al
iz
ed

to
ta
ll
ea
st
sq
ua

re
s,
ro
w
-w

is
e
co
rr
el
at
io
n

[2
1,

25
]

(I
⊗
P
R
)−

1
A

b
T

x=
gt

ls
([

A,
b]

,I
,P

r)
Se
e
fo
ot
no
te

c,
a

G
en
er
al
iz
ed

to
ta
ll
ea
st
sq
ua

re
s,
co
lu
m
n-

an
d
ro
w
-w

is
e
co
rr
el
at
io
n

[2
1,

25
]

(P
C
⊗
P
R
)−

1
A

b
T

x=
gt

ls
([

A,
b]

,P
c,

Pr
)

Se
e
fo
ot
no
te

c,
a

G
en
er
al
iz
ed

m
ix
ed

to
ta
ll
ea
st
sq
ua

re
s,
co
lu
m
n-
w
is
e
co
rr
el
at
io
n

[2
1]

([
I

0
0

P
C

] ⊗
I) −1

A
b

[F
:,
1:
n1
,T

:,
1:
n−

n1
]

x=
gm

tl
s(

A(
:,

1:
n1

),
…

n.
a.

a
A(

:,
n1

+
1:

en
d)

,b
,P

c)
a
T
he

T
L
S
so
lu
tio

n
is
gi
ve
n
in

eq
ua
tio

n
(4
3)
.A

n
al
te
rn
at
iv
e
fo
rm

ul
at
io
n
is
:x

tls
=

tls
([
A
,b
])
=

( AT A
−

σ
2 n+

1
I) −1 A

T
b,
w
ith

σ
n+

1
,t
he

sm
al
le
st
si
ng
ul
ar

va
lu
e
of

[A
,b
]
[1
].
Si
m
pl
y
co
m
pa
ri
ng

th
e
L
S
an
d
T
L
S

ex
pr
es
si
on
s
(w

ith
ou
tp

ro
of
)
le
ad
s
to

th
e
T
L
S
co
va
ri
an
ce

Σ
tls
([
A
,b
])
=
m
se

·( AT A
−

σ
2 n+

1
I) −1 .

It
ag
re
es

w
ith

th
e
co
va
ri
an
ce

m
at
ri
x
fo
un
d
nu
m
er
ic
al
ly

w
ith

cw
tl

s,
bu
td

if
fe
rs
fr
om

th
e
on
e
gi
ve
n
in

[2
6,

p
24
2]

by
a

fa
ct
or

of
m
/
(m

−
n)
.H

en
ce
,t
he

de
fin

iti
on

gi
ve
n
by

va
n
H
uf
fe
la
nd

V
an
de
w
al
le
is
va
lid

fo
r
th
e
as
ym

pt
ot
ic
ca
se
m
→

∞
.

b
T
he

in
pu
tp

ar
am

et
er
s
ar
e
co
nn
ec
te
d
vi
a
σ

=
[σ

x
;σ

y]
,P

=
C
or
r(
Σ
)
=

di
ag

(ρ
,−

m
)
+

di
ag

(ρ
,m

)
+
I(

2m
×

2m
)
,Σ

=
di
ag

(σ
)
·P

·d
ia
g
(σ

),
an
d
W

[d
ai
;d
bi
],
[d
ai
;d
bi
]
=

Σ
−

1
.

c
R
ef
er

to
ap
pe
nd
ix

an
d
[2
5]
:t
he

G
T
L
S
co
va
ri
an
ce

ca
n
be

tr
ac
ed

ba
ck

to
a
T
L
S
co
va
ri
an
ce
:Σ

x,
gt
ls
([
A
,b
])
=

W
C
11
·Σ

x,
tls
(W

T R
[A
,b
]W

C
)·
W

T C
11

W
2 C
22

.

8



Meas. Sci. Technol. 33 (2022) 015017 M Wurm

6. Summary and conclusion

A method to solve overdetermined linear systems with arbit-
rary correlations of the coefficients was introduced. It was
optimized in mathematical and technical aspects in terms of
computational speed and robustness. It is flexible in applic-
ation since it allows one to assume single coefficients to be
free of error. The covariance of the solutions is also calcu-
lated. The solution itself as well as its covariance were val-
idated by comparison with alternative solutions for special
cases. The comparison covered all possible correlation scen-
arios. From that, it can be concluded that the method works
reliably and quite fast for all sufficiently well-conditioned real-
world problems.

The MATLAB code, with examples, can be found in the
supplementary material. It is intended to make it available
under the BSD license [27] at the MATLAB central file
exchange.

Data availability statement

All data that support the findings of this study are included
within the article (and any supplementary files).

Appendix. Special cases with analytical solutions

Known analytical solutions for some special cases are given
below in their most compact form. Please note: again, only the
formulas for the most important cases of well-defined prob-
lems are given. That is, it is assumed that all specified inverse
matrices exist.

Least squares (LS) solution

ForWb ∼ I,WA = 0, andWAb = 0, so, with only deviations in
b but not in A and no correlations allowed, one simply gets the
best fitting least squares result as the solution of the Gaussian
normal equation as

xls = A+b (40)

withA+ =
(
ATA

)−1
AT, theMoore–Penrose pseudo inverse of

A.

Weighted least squares (WLS) solution

In the more general case for Wb ∼Σ−1
b with Σb, the covari-

ance matrix for b, but still WA = 0, and WAb = 0 the solution
is given by

xwls =
(
ATΣ−1

b A
)−1

ATΣ−1
b b. (41)

Total least squares (TLS) solution

With W∼ I (i.e. uniform weights in A and b and no
correlations), a total least squares problem is defined. Its solu-
tion can be calculated from the singular value decomposition
of [A,b]:

UΣ
(

VA VAb
VbA Vb

)T

= [A,b] (42)

as

xtls = tls([A,b]) =−VAbV−1
b . (43)

Generalized total least squares (GTLS) solution

GTLS can deal with a certain structure of deviations in A and
b and row- and column-wise correlations [5, 25]. The weight
matrix is given as

W∼
(
P((n+1)×(n+1))
C ⊗P(m×m)

R

)−1
. (44)

Hence, GTLS assumes that all rows and/or all columns have
equal covariance matrices.

With the Cholesky factors and their inverse

CT
CCC = PC CT

RCR = PR (45)

WC = C−1
C WR = C−1

R (46)

the GTLS problem can be transformed to an ordinary TLS
problem. From

x ′
tls = tls

(
WT

R [A,b]WC
)

(47)

its TLS-solution, the GTLS-solution can be determined as

xgtls = gtls([A,b] ,PC,PR) =
WC11x ′

tls −WC12

WC22
. (48)

Here,WC was partitioned as

WC =

n 1(
WC11 WC12

0 WC22

)
n
1
. (49)
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