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ABSTRACT

A nonlinear analytical technique (Homotopy Perturbation Method) has been developed to
assess the effects of several nanofluids characteristics on the free convective heat transfer
to the power-law non-Newtonian flow between two infinite parallel vertical flat plates. A
numerical method (Runge-Kutta) also has been done in order to show the accuracy of
Homotopy Perturbation Method (HPM), then several graphs have been drawn which show
the effects of nanoparticle volume fraction, kind of nanofluids, Eckert number and
dimensionless non-Newtonian viscosity on the velocity and temperature profiles of problem.
Finally, for various values of dimensionless non-Newtonian viscosity, the effects of different
value of nanofluid nanoparticle volume fraction on the Heat transfer coefficient and skin
friction are presented and discussed.

Keywords: Non-newtonian nanofluids; free convection flow; nonlinear equation; HPM
method.
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1. INTRODUCTION

Natural convection flow is a well studied problem having a vital role in many engineering
applications such as heat exchangers, insulation, building ventilation, refrigeration, solar
energy collection, petroleum reservoirs, nuclear waste repositories and etc. Ostrach [1] and
Khalifa [2] presented a review of heat transfer due to natural convection. Despite the fact
that the importance of non-Newtonian fluids in modern technology and industries processes
is recognized in a wide range of studies, only a few studies have been published on non-
Newtonian nanofluids. B K Jha and A O Ajibade presented a transient motion of a viscous
and incompressible fluid between two infinite vertical parallel plates due to natural
convection currents occurring as a result of application of isothermal and adiabatic
conditions on the plates. They used the method of Laplace transform to solve the problem
[3]. Natural convection heat and mass transfer of nanofluids over a vertical plate embedded
in a saturated Darcy porous medium subjected to surface heat and nanoparticle fluxes is
analysied by Noghrehabadi et al. [4]. they carried out the numerical solution in two steps.
The governing partial differential equations were firstly simplified into a set of highly coupled
nonlinear ordinary differential equations by appropriate similarity variables, and then
numerically solved by the finite difference method. Rashad et al. [5] performed an analysis to
study the effect of uniform transpiration velocity on free convection boundary-layer flow of a
non-Newtonian fluid over a permeable vertical cone embedded in a porous medium
saturated with a nanofluid [5].

An exact analysis of the natural convection in unsteady Couette flow of a viscous
incompressible fluid confined between two vertical parallel plates in the presence of thermal
radiation was performed by M. Narahar [6]. A numerical analysis was performed to examine
the heat transfer of colloidal dispersions of Au nanoparticles in water by Primo Ternik et al.
[7]. They reported exact numerical results showing clearly that the average Nusselt number
is a growing function of both volume fraction of Au nanoparticles and Rayleigh number. Niu J
et al. [8] studied the slip-flow and heat transfer of a non-Newtonian nanofluid in a microtube
by means of theoretical method [8]. In their research, the power-law rheology was adopted
to describe the non-Newtonian characteristics of the flow, in which the fluid consistency
coefficient and the flow behavior index depend on the nanoparticle volume fraction. The
volumetric flow rate and local Nusselt number were calculated for different values of
nanoparticle volume fraction and slip length. They presented that an increase in the
nanoparticle volume fraction will lead to a decrease in the flow rate at a small pressure
gradient and constant slip length, but as the pressure gradient becomes large enough, the
flow rate increases with the increase of the nanoparticle volume fraction. They also
concluded that this important phenomenon will be observed when the radius of the tube
shrinks to micrometer scale. They studied the effect of thermal boundary condition on the
thermally fully developed heat transfer of the nanofluid. Despite the fact that most of thermal
and fluid phenomenons are expressed by nonlinear equations, only a few methods are able
to solve them. One of these methods is HPM which was introduced by J. H. He [9]. This
method has been developed by many researchers [10-13] to solve different types of non-
linear and nonhomogeneous differential equations of heat and fluid flow problems. This
method also gives an acceptable solution of natural convection of a non-Newtonian fluid as it
will be observed in this paper.

2. DEFINITION OF THE PROBLEM

Simple schematic geometry of present study is shown in Fig. 1.
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Fig. 1. Schematic model of present problem

A non-Newtonian fluid flows between two vertical flat plates with 2b distance from each
other. Constant temperatures T, and T, are assumed to be the temperature of walls at x=+b
and x= - b, respectively, where T, >T4. This difference in temperature causes the fluid near
the wall at x=- b to rise and the fluid near the wall at x=+b to drop down.

The equation of motion is [16]:

dv dv , dv
s 6ﬁ(

(1)

And the energy equation as follows:

dT
d2

+ (—) 2ﬂ3<%)“ -0 @

The fluids are water-based nanofluids containing TiO,, CuO, Al,O3;, Cu and Ag. It is also
assumed that the nanoparticles and the Fluid phase are in thermal equilibrium and there is
no slip between them. Table 1 shows the thermo-physical properties of water and the
elements Cu, TiO2, CuO, Ag, and Al,O;.

Table 1. Thermophysical properties

p(kg/m’) C,(J/kgk) K (w/m.k) B10°(k™)

Pure Water 9971 4179 0.613 21

Cu 8933 385 401 1.67
TiO, 4250 686.2 8.9538 0.9
CuO 535.6 6500 20 57.45
Ag 10500 235 429 1738.6
AlLO; 3970 765 40 0.85

Maxwell-Garnetts (MG) approximation can be used to find the effective viscosity of the
nanofluid (Khanafer et al.) [14] as:
_H
2.5
(1-9) 3)

The effective density of the fluid is given as:

'unf:
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Py =1=0)p, +op, @)

The thermal conductivity of the nanofluid is approximated as viscosity of a base fluid p;
containing dilute suspension of fine spherical particles and is given by Brinkman [15]:

_ k,+2k, —2p(k, — k)
k, + 2kf + (p(kf —-k)

S (5)

Where ¢ is the nanoparticle volume fraction. Introducing the following dimensionless
variables based on the study of Rajagopal and Na [16]:

Vo b I -T, (6)

Then, momentum, and energy equations, in non-dimensional form, in Cartesian coordinates
can be reduced to the following forms:

2 2
TV | 6501-pp3 Wy Y
dn dn” dn

+60=0

2 N 25
d €+EcxPrx (1-¢) (dV)2+25EcxPrxL(d—V)4:O
n 4, dn 4, dn ®)

Where the boundary condition, Prandtl number (Pr), Eckert number (Ec) and dimensionless
non-Newtonian viscosity (8) are given as:

pr:ﬁABEQL Ee = s 5:§£Ki
5 s P
pk, (pC,),(6,-6,) Heb (10)

The average Heat transfer coefficient (h) and skin friction (S) are defined as [16]:

hzﬁ(—l) and Szd—V(—l)
dx dx (11)

3. HOMOTOPY PERTURBATION METHOD

In order to demonstrate the HPM method, consider the following equation as follows:
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Alw)— f(r)=0 reQ with bc:B(u,g—u):O rel’
on (12)

Where A is a general differential operator, B a boundary operator, f (r) a known analytical

function and I is the boundary of the domain Q . A can be written into two parts, L for linear
and N nonlinear part. Eq. (10) can therefore be defined as follows:

Lw)+N@wu)—f(r)=0 reQ (13)
Homotopy perturbation structure is introduced as follows:
Hw,p)=0-p)L(v)—L(u,)]+ p[Av)— f(r)]=0 where v(r,p):Q2x[01] > R (14)

In Eq. (5), p € [0, 1] is an embedding parameter and uy is the first approximation that
satisfies the boundary condition. It can be assumed that the solution of Eq. (12) can be
written as a power series in p, as following:

2
v:v0+v1p+v2p +...

(15)
The best approximation for solution can be achieved when
. 2
u th (Vo tvipt+v,p +...)
p—l (16)

4. HPM SOLUTION

According to the HPM method, Eq (17) and Eq (18) can be written according to the Eq. (7)
as -

v v, dv
H(V,p)=(1-p)==)+ pl66(1- )" (=) —+0]
dn dn  dn (17)
And:
HO.p) == )y s s perpx 0= @V o spepex L@y

According to eq. 6, the momentum and energy equations can be assumed as -
S0 =1, + pfi(m)+ p 1)+ p*f () (19)
V() =Vo(m+ pVi(n+ p V() + pV () (20)

By Substituting equations (19) and (20) into Eq. (21) and (22) and collecting all the

w0,

coefficients with the same rational power of “p”:
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dd V() + P{ d > V1(77)+90(77)+---}+p2{65“"'””( V(77)) V NGRS R
n dn dn
and
d 2
2 2 ECPr(iVo(ﬂ)) 2
d <9 (77)+P{ d 91(77)+ - +.0+ P d —0,())..} .
dn (-4 4, dn 1)

The coefficients of P'in egs. 19 and 20 must be zero in order to find the funct|ons of Vi(n)
and 6;(n). It should be noted that, boundary condition for the coefficient of PYis:

Vim=-1)=0, 6,(n=-1)=-05, Vi(n=1)=0, 6(n=1)=05 (22

Then, by applying this boundary condition, Vy(n) and 8y(n) will be resulted as:

] 1
Vin=—n'-—n, 6.(7)=-0.5
o (1) 1277 7 L (77) n .

Boundary conditions for the coefficient of P" P... are

I/i,#o (77) = 0’ ei,#o (77) = 0’ I/i,i¢0 (77) = 0’ 91‘,#0 (77) = 0 (24)

Then, by applying these boundary conditions, V4(n), 81(n), V2(n), 82(n), Vs(n), 83(n)..., will be
obtained. In fact each step helps to find the momentum and energy functions of next step.
For instance, using the eq. 21 in the coefficient of P:

,(n)——m@a\/ 99 +95J1- 9 —185\1- 4" +..
l 10
6’1(77)——10368(1 ¢)”A( cPr(—(815«/ ¢ +815J1—p —1651— pd)n" +.. 05

In a similar manner, usmg the eq.22 in the coefficient of p? , Vo and 6, can be obtained and
so forth. In this work, 4™-order solution of the problem accordmg to egs.17 and 18 when P=1
will be the answers as follows:

V(n)——n ——77—7(95\/ PP +951—p —185J1-pd)n” +..

2016

07) =—0.57 —— (EcPr(—(8151/ 36 +8151—§ —165/1— )" +...

10368 1- ¢)5/2A (26)
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5. RESULTS AND DISCUSSION

In this study, a straightforward technigue named HPM is used to solve the nonlinear
equation of non-Newtonian nanofluid flow between two infinite parallel vertical flat plates. In
order to show the preciseness of results, a numerical method (the fourth-order Runge—Kutta)
is implemented. Tables 2, 3 and Figs. 2, 3 show the Comparisons between numerical results
and HPM solutions for different parameters (5, ¢, Ec) of Cu-Water nanofluid. As it can be
seen, the difference between numerical result and HPM solution is negligible indicating that
the HPM method can be a trusty method for solving some such equations.

Table 2. Velocity value of Cu-water nanofluid

n Present Numeric

-0.75 0.05706212668 0.0563789031518292
-0.5 0.07043266381 0.0709522078393007
-0.25 0.05133340706 0.0520967264690272
0 0.01535910100 0.015700101
0.09689373164 0 0

-0.25 -0.0229822888 -0.0221489862588
0.5 -0.0487749615 -047108779075

0.75 -0.0453663958 -0.0453324291552

Table 3. Temperature value of Cu-water nanofluid

n Present Numeric

-0.75 0.4222082998 0.4204839230778
-0.5 0.3015480135 0.3002737376344
-0.25 0.1794516688 0.179662947314

0 0.05081001960 0.05002819772445
-0.25 -0.0877590408 -0.0880385164533
0.5 -0.2331537377 -0.2301061271274
0.75 -0.3801047403 -0.3801610899417

Fig. 2. Velocity Profile of Cu-Water nanofluid, Comparison between Numeric and HPM
results
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Fig. 3. Temperature Profile of Cu-Water nanofluid, Comparison between Numeric and
HPM results

Velocity and temperature profiles of different nanofluids are shown in Figs. 4 and 5,
respectively.
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Fig. 4. Velocity profile, comparison between different nanofluids
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Fig. 5. Temperature profile, comparison between different nanofluids

All nanofluids approximately have the same trend in the velocity and temperature
distributions despite the different values of their properties. Figs. 6 and 7 shows the effect of
nanoparticle volume fraction (¢) on the velocity distribution V(n) and the temperature profiles
0 (n) when 6=1, Ec=1 and Pr=6.2. The volume fraction of the nanoparticles increases with
velocity increase.
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Fig. 6. Velocity profile of cu-water nanofluid, nanoparticle fraction effect
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Fig. 7. Temperature profile of cu-water nanofluid, nanoparticle fraction effect

The effect of dimensionless non-Newtonian viscosity (8) of Cu-Water nanofluid on the
velocity V (n) and temperature profiles 6 (n) of Cu-Water nanofluid are shown in Figs. 8 and
9 assuming ¢=0.1, Ec=1 and Pr=6.2. The dimensionless non-Newtonian viscosity signifies
the relative importance of the inertia effect compared to the viscous effect. Dimensionless
non-Newtonian viscosity (8) increases as velocity and temperature magnitude decrease.
Also, the maximum value of velocity can be approximately observed at =0.6.
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Fig. 8. Velocity profile of cu-water nanofluid, dimensionless non-newtonian viscosity
effect
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8(n)

Fig. 9. Temperature profile of cu-water nanofluid, dimensionless non-newtonian
viscosity effect

Figs. 10 and 11 indicate the effects of the Eckert number (Ec) on the velocity V (n) and
temperature distributions 6 (n) of Cu-Water nanofluid when ¢=0.1, =1 and Pr=6.2,
respectively. As can be seen, increasing in the velocity and temperature will lead to an
increase in Eckert number. The minimum values for the velocity and temperature will be
gotten by neglecting the viscous dissipation. Also, the maximum value of the velocity can be
approximately seen at |n|=0.5 in the middle of the distance between two plates, and the
maximum value of the temperature is seen when | n|=1.

c

-0.02

-0.04

1 0.5 0 0.5 1

-0.06

Fig. 10. Velocity profile of cu-water nanofluid, eckert number effect
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Fig. 11. Temperature profile of Cu-water nanofluid, eckert number effect

Fig. 12 shows the effect of different nanoparticle volume fraction (¢) of Cu-Water nanofluid
on the skin friction (s) while the dimensionless non-Newtonian viscosity (&) varies between 0
to 10 and the Eckert number (Ec) value is1. The skin friction has a decreasing trend with the
dimensionless non-Newtonian viscosity parameter and increasing trend with the volume
fraction of the nanoparticles (when 0<8<5) but this trend has an opposite form (when
5<6<10).
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Fig. 12. Variation of skin friction, nanoparticles fraction effect
Fig. 13 shows the effect of different nanoparticle volume fraction (¢) of Cu-Water nanofluid

on the heat transfer coefficient (h) while the dimensionless non-Newtonian viscosity (&)
varies among 0 to 20 and the Eckert number (Ec) value is1. The heat transfer coefficient (h)
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has an increasing trend with the dimensionless non-Newtonian viscosity parameter and the
volume fraction of the nanoparticles when 0<d0<12, but the heat transfer coefficient (h)
decreases with increase of dimensionless non-Newtonian viscosity when 12<6<20.

[— o0 —— =025 == =05 =075 — - ¢=0.1]

03784
~0380 4
~0382 4
~0384 1
03361
~0388
~0.390 4

-0.392 4

Fig. 13. Variation of heat transfer coefficient, nanoparticle fraction effect
6. CONCLUSION

In this study, the phenomenon of the free convective heat transfer of nanofluid to the power-
law non-Newtonian flow between two infinite parallel vertical flat plates has been assessed
by Homotopy perturbation Method. The effects of the nanoparticle volume fraction (@),
dimensionless non-Newtonian viscosity (0) and Eckert number (Ec) on the velocity and
temperature profiles have been investigated for a Cu-Water nanofluid. Finally, for different
values of dimensionless non-Newtonian viscosity (8), the effects of different value of
nanofluid nanoparticle volume fraction (¢) on the Heat transfer coefficient (h) and skin
friction (S) were presented and discussed. The study appears to show that an increase in &
when E and Pr are constant decrease the skin friction but increase the heat transfer.
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