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Image Thresholding Improved by Global Optimization
Methods
Felipe Balabanian, Eduardo Sant'Ana da Silva, and Helio Pedrini

Institute of Computing, University of Campinas, Campinas, SP, Brazil

ABSTRACT
Image thresholding is a common segmentation technique with
applications in various fields, such as computer vision, pattern
recognition, microscopy, remote sensing, and biology. The selec-
tion of threshold values for segmenting pixels into foreground and
background regions is usually based on subjective assumptions or
user judgments under empirical rules ormanually determined. This
work describes and evaluates six effective threshold selection
strategies for image segmentation based on global optimization
methods: genetic algorithms, particle swarm, simulated annealing,
and pattern search. Experiments are conducted on several images
to demonstrate the effectiveness of the proposed methodology.

Introduction

Image segmentation (Bhanu and Lee 2012; Gonzalez andWoods 2010; Rosenfeld
2013; Schwartz and Pedrini 2006; Silva et al. 2008) plays an important role in
several image processing and computer vision tasks. Thresholding is one of the
simplest techniques for extracting objects in an image from its background.
Thresholding techniques (Ali, Ahn, and Pant 2014; Beauchemin 2013; Sezgin
2004; Singla and Patra 2015) can be classified into bilevel andmultilevel categories.
In bilevel thresholding (Zou et al. 2012; Zou, Liu, and Zhang 2013), a threshold
value is determined to segment the image into two regions, one corresponding to
the object in the image and another representing the background. In multilevel
thresholding (Ali, Ahn, and Pant 2014; Sarkar, Das, and Chaudhuri 2015) more
than one threshold value is determined to segment the image into background and
objects present in the image.

Several image thresholding approaches (Dirami et al. 2013; Kapur, Sahoo,
andWong 1985; Otsu 1979;Weszka, Nagel, and Rosenfeld 1974; Ye et al. 2012)
have been proposed in the literature. Many of them (Otsu 1979; Weszka,
Nagel, and Rosenfeld 1974) are based on shape information of the histogram
to select threshold values. In ideal cases, the threshold can be selected at the
bottom of a valley between two peaks representing objects and background,
respectively. However, it is often difficult to detect valleys precisely in real

CONTACT Helio Pedrini helio@ic.unicamp.br Institute of Computing, University of Campinas, Av. Albert
Einstein 1251, Campinas, SP 13083-852, Brazil.

APPLIED ARTIFICIAL INTELLIGENCE
2017, VOL. 31, NO. 3, 197–208
https://doi.org/10.1080/08839514.2017.1300050

© 2017 Taylor & Francis

http://orcid.org/0000-0003-0125-630X
https://crossmark.crossref.org/dialog/?doi=10.1080/08839514.2017.1300050&domain=pdf&date_stamp=2017-05-17


images. Other methods attempt to optimize an objective function, such
entropy maximization (Kapur, Sahoo, and Wong 1985), Bayesian error mini-
mization (Ye and Danielsson 1988), Bayesian error minimization (Ye and
Danielsson 1988), and intra-class variance minimization (Otsu 1979).

One of the main difficulties related to the use of complex segmentation
algorithms is that they have several parameters that are usually defined empiri-
cally by users, which affects the quality of segmentation and can vary signifi-
cantly for different problems.

Since the threshold values defined in a segmentation process can considerably
influence the detection and location of objects present in the image, it is
important to have a robust method for selecting the best thresholds. In this
paper, the parameters used in a number of different image thresholding techni-
ques are automatically defined through four global optimization methods
(Floudas 2013; Horst and Tuy 2013).

The main contributions of the work include the definition of an effective
fitness function to evaluate the candidate solutions based on an image quality
measure and the automatic selection of appropriate image thresholds through
optimization approaches.

The remainder of the paper is organized as follows. “Background” section
briefly describes concepts and works related to image thresholding techniques.
The proposed method for selecting the best parameters in a number of thresh-
olding methods based on optimization methods is presented in “Proposed
methodology ” section. Experimental results are described and discussed in
“Experimental results” section. “Conclusions” section presents the conclusions
and directions for future work.

Background

The main purpose of thresholding (Beauchemin 2013; Dirami et al. 2013;
Gonzalez and Woods 2010; Ye et al. 2012) is to extract pixels belonging to
objects from an image background. Image thresholding techniques are com-
monly categorized into global and local approaches (Glasbey 1993; Trier and
Jain 1995). In global thresholding, a single threshold value T is used for all the
image pixels, which is suitable for cases where the pixel values corresponding
to object components and background are consistent along the entire image. In
local thresholding, a different threshold T is adaptively selected for each pixel
according to local image characteristics, which is more suitable to accommo-
date non-uniform lighting conditions in the image.

Global thresholding

The simplest thresholding is to select an intensity value as a threshold, such
that the pixel values below this threshold become 0 (black) and the values
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above this threshold become 1 (white). If T is the global threshold of the
original image f ðx; yÞ, then

gðx; yÞ ¼ 1; if f ðx; yÞ � T
0; otherwise

�
(1)

A widely used global thresholding approach was developed by Otsu (Otsu 1979),
which automatically clusters the image pixels into two classes, background and
foreground. The method minimizes the intra-class variance (the variance within
the class) or, conversely, maximizes the inter-class variance (the variance
between the classes).

Considering ½0; L� 1� the range of intensity levels, the intra-class variance
can be defined as the weighted sum of the variances of each class

σ2withinðTÞ ¼ nBðTÞσ2BðTÞ þ nFðTÞσ2FðTÞ (2)

where nBðTÞ ¼
PT�1

i¼0
pðiÞ and nFðTÞ ¼

PL�1

i¼T
pðiÞ. Value σ2BðTÞ is the variance of

the pixels in the background (below the threshold), whereas σ2FðTÞ is the
variance of the pixels in the foreground (above the threshold).

The inter-class variance can be defined as

σ2betweenðTÞ ¼ nBðTÞnFðTÞ½μBðTÞ � μFðTÞ�2 (3)

where μBðTÞ ¼
PT�1

i¼0
ipðiÞ=nBðTÞ and μFðTÞ ¼

PL�1

i¼T
ipðiÞ=nFðTÞ

Local thresholding

Local thresholding techniques are designed to overcome the limitations found in
the global thresholding due to changes in lighting conditions or presence of local
shadows.

Bernsen’s method (Bernsen 1986) calculates the local threshold value based
on the mean value of the minimum and maximum intensities of pixels within a
window, defined as

Tðx; yÞ ¼ ðzmin þ zmaxÞ=2 (4)

where zmin and zmax are the minimum and maximum intensity values, respec-
tively, within an n� n region centered at ðx; yÞ.

Niblack’s method (Niblack 1986) calculates the threshold value for each pixel
ðx; yÞ based on the local mean and standard deviation, expressed as

Tðx; yÞ ¼ μðx; yÞ þ k σðx; yÞ (5)

where μðx; yÞ and σðx; yÞ are local mean and standard deviation, respectively,
within an n� n region of pixel ðx; yÞ. The region size should be small enough
to preserve local details of the image, but also large enough to suppress noise.
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The value k is used to adjust the fraction of total pixels that belong to
foreground object.

Sauvola and Pietaksinen’s method (Sauvola and Pietaksinen 2000) calculates
the threshold value for each pixel ðx; yÞ as

Tðx; yÞ ¼ μðx; yÞ 1þ k
σðx; yÞ

R
� 1

� �� �
(6)

where μðx; yÞ and σðx; yÞ are local mean and standard deviation, respectively,
within an n� n region of pixel ðx; yÞ. Sauvola and Pietaksinen suggested the
values k ¼ 0:5 and R ¼ 128.

Phansalskar, More, and Sabale’s method (Phansalskar, More, and Sabale 2011)
is variation to Sauvola and Pietaksinen’s method (Sauvola and Pietaksinen 2000)
to deal with low-contrast images. The local threshold is calculated as

T ¼ μðx; yÞ 1þ p expð�qμðx; yÞÞ þ k
σðx; yÞ

R
� 1

� �� �
(7)

where local mean and standard deviation, respectively, within an n� n region of
pixel ðx; yÞ. They suggested the values k ¼ 0:25, R ¼ 0:5, p ¼ 2, and q ¼ 10.

The mean method (Jain, Kasturi, and Schunck 1995) selects the threshold as
the mean of the local intensity distribution in an n� n region. If the intensity of
a pixel ðx; yÞ is above themean of its neighborhood, then the pixel is set to object;
otherwise, it is set as background.

In a similar way, themedian method (Jain, Kasturi, and Schunck 1995) selects
the threshold as themedian of the local intensity distribution in an n� n region.
If the intensity of a pixel ðx; yÞ is above the median of its neighborhood, then the
pixel is set to object; otherwise, it is set as background.

Proposed methodology

To find the best parameter values for the image thresholding problem, wemodel
a fitness function to guide the selection of candidate solutions. The Structural
Similarity Index (SSIM) (Wang et al. 2004) is a quality measure calculated
between two images f and g is expressed as

SSIMðf; gÞ ¼ ð2μfμg þ C1Þð2σfg þ C2Þ
ðμ2f þ μ2g þ C1Þðσ2f þ σ2g þ C2Þ (8)

where μf is the mean of f, μg is the mean of g, σ2f is the variance of f, σ
2
g is the

variance of g, and σxy is the covariance of f and g. The SSIM measure is in the
range of ½0::1�, such that closer it is to 1, the more similar the images f and g are.

The fitness function is defined as

F� ¼ argmax
F2Ω

SSIMðf; gÞ (9)
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whereΩ is the set of all possible solutions. Therefore, our goal is to maximize the
quality measure computed between an input image f and an estimated image g.

In our work, four global optimization approaches (Arora 2015; Chong and
Zak 2013) are used to generate the estimated image g by automatically selecting
the best parameter values employed in the image thresholding techniques
described in the previous section.

Genetic Algorithms (GAs) (Holland 1975; Koza 1992) are heuristic search
algorithms based on evolutionary strategies of natural selection, which can be
used to generate solutions to search and optimization problems. First, an initial
population is created with a number of individuals. Each individual corresponds
to a possible solution, that is, it represents a set of possible values for the
thresholding parameters. Each gene represents a specific parameter encoded in
a bit string. The parameters values for the initial set of solutions are randomly
generated. A solution (individual) is evaluated through the fitness function
[Equation (8)], where the value resulting from the segmentation is compared
to a reference. During the optimization process, the best solutions are selected
and new solutions are created from them (reproduction). For each generation,
new individuals are created via crossover to compose the next generation. The
mutation operator helps prevent local optimum. The evolutionary process
continues until a predefined number of generations is reached, such that the
segmentation parameters (genes) of the best solution found in the last genera-
tion correspond to the final result.

The Particle Swarm Optimization (PSO) (Clerc 2010; Kennedy and Eberhart
1995) algorithm starts with a random population (called swarm) of candidate
solutions (called particles), each one having the parameters to be optimized. At
each iteration, every particle adjusts its velocity vector and the best known
position of the swarm is updated according to the fitness function [Equation
(8)]. The algorithm stores and progressively replaces the best parameters of each
particle, as well as the particle that best fits the parameters. The process con-
tinues until a predefined number of iterations is performed.

The Simulated Annealing (SA) (Brooks and Morgan 1995; Dowsland and
Thompson 2012) method models the physical process of heating a material and
then slowly decreasing the temperature to reduce defects, thus minimizing the
system energy. The algorithm starts with a randomly chosen initial solution. At
each iteration, a new point is randomly generated. The distance of the new point
from the current point is based on a probability distribution with a scale
proportional to the temperature. The algorithm accepts not only new points
that produce a better solution, but also points that generate a worse solution.
This reheatingmechanism helps prevent local optimum, such that other possible
solutions can be explored globally. As the algorithm proceeds, a cooling schedule
(Kirkpatrick, Gelatt, and Vecchi 1983) is selected to systematically decrease the
temperature, reducing the extent of its search to converge to an optimum.
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Pattern Search (PS) (Hooke and Jeeves 1961) is a numerical optimization
approach that does not require derivatives (gradient) of the fitness function to be
optimized. A pattern is a finite set of points (vectors) used for the algorithm to
determine which points to search at each iteration. Therefore, the method
searches a set of points around the current point to find that one where the
value of the fitness function generates a better result than the value at the current
point. The algorithm stops when a predefined number of iterations is per-
formed, the variation in the fitness function from one iteration to the next is
below a tolerance, or the distance between the point found at one successful poll
and the point found at the next one is below a tolerance.

Experimental results

The algorithms proposed in our work were implemented in MATLAB under
Linux operating system. Experiments conducted on several images demon-
strated the effectiveness of the image thresholding techniques improved by the
optimization strategies. Due to space limitations, results for only few images are
reported here.

Table 1 reports some results obtained with the optimization methods for
selecting the parameters for image thresholding. Values for the computed SSIM
measure, percentage of foreground pixels (black), and estimated parameters are
shown for each image thresholding algorithm. The size n for the neighborhood
region used in the algorithms ranged from 1 to 30.

For the GA, the population size NGA was defined as 50, the crossover prob-
ability PC was 0.8, the mutation probability PM was 0.05, and the number of
generations G was 10. For the PSO, the population size NPSO was defined as 50
and the inertia range was set from 0.1 to 1.1. In the SA algorithm, the initial
temperature was set to 100. In the PS algorithm, the initial mesh size was set to
1.0 to perform a local search in a neighborhood around themesh points, whereas
the tolerance on variable was defined as 0.000001 to interrupt the iterations if
both the change in position and the mesh size are less than such tolerance.

Images generated with the application of the best estimated parameters are
shown in Figure 1. It is possible to observe that the fitness function was able to
produce adequate qualitative segmentation results. Moreover, the SSIM mea-
sures achieved through the image thresholding methods are higher when com-
pared to those obtained with traditional global thresholding Otsu’s method
(Otsu 1979).

It is worth mentioning that the PS optimization method, as it can be observed
from Table 1, provided the best qualitative results in relation to the other three
methods.
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Fiducial (original) Watch (original)

Otsu (SSIM:0.246552) Otsu (SSIM:0.094174)

GA (SSIM:0.289617) GA (SSIM:0.125003)

PSO (SSIM:0.289777) PSO (SSIM:0.125195)

SA (SSIM:0.287376) SA (SSIM:0.122471)

PS (SSIM:0.290501) PS (SSIM:0.125426)

Figure 1. Images resulting from the application of the best estimated parameters to each
thresholding method. The values of SSIM are provided for each image by taking the original
one as reference.
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Conclusions

The selection of threshold values for image segmentation is typically per-
formed manually based on empirical assumptions; however, this process may
significantly affect the quality of the final result.

This work presented and discussed the application of four global optimization
methods (GAs, particle swarm, SA, and PS) to six image thresholding techniques.

The automatic threshold values estimated by the algorithms, according to a
fitness function based on image quality, were able to generate highly promising
results. The proposed method can be used as a preprocessing step in other tasks,
such as object location and image interpretation.

As directions for futurework,we intend to investigate the improvement of other
image processing techniques, such as filtering, registration, and compression.
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