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Concept Compression in Formal Concept Analysis Using
Entropy-Based Attribute Priority
Sumangali Ka, Aswani Kumar Ch.a, and Jinhai Lib

aSchool of Information Technology and Engineering, VIT University, Vellore, India; bFaculty of Science,
Kunming University of Science and Technology, Kunming, China

ABSTRACT
Discovering important concepts in formal concept analysis
(FCA) is an important issue due to huge number of concepts
arising out of complicated contexts. To address this issue, this
paper proposes a method for concept compression in FCA,
involving many-valued decision context, based on information
entropy. The precedence order of attributes is obtained by
using entropy theory developed by Shannon. The set of
concepts is compressed using the precedence order thus
determined. An algorithm namely Entropy based concept com-
pression (ECC) is developed for this purpose. Further, similarity
measures between the actual and compressed concepts are
examined using the deviance analysis and percentage error
calculation on the deviance of input weights of concepts.
From the experiments, it is found that the compressed
concepts inherit association rules to the maximum extent.

Introduction

The mathematical lattice based framework namely Formal concept analysis
(FCA) has emerged as a distinctive tool for knowledge discovery. FCA is a
theory of mathematics meant for determining the concepts and their hier-
archies that underlie in any information system. For any information system
FCA produces a set of concepts and each concept consists of two items,
namely extent and intent (Wille 1982). For data analysis, FCA-based
approaches are to be essential in the fields of artificial intelligence, deci-
sion-making systems, machine learning, knowledge discovery, data mining,
expert systems, approximate reasoning and pattern recognition, fault diag-
nosis, etc., (Priss 2006). FCA requires no prior knowledge or additional
information about data unlike probability theory and fuzzy set theory.

In general, any context often produces large number of formal concepts,
from which it is very difficult for any user to understand and analyze the
context (information system) and such context often contains much redundant
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knowledge. The redundant knowledge present in context wastes the resources
and can interfere in the process of decision-making. Hence it is essential to
reduce the set of redundant knowledge. To this end, we need to create a simple
model of the context. Such models can be created by the structured knowledge
of the information system. The structure includes several attributes which may
or may not be relevant to the study. Hence it is required to compress the
attributes or concepts according to the necessity (Han and Kamber 2006).

There are several methods to produce an attribute ranking by which one
can isolate the individual merit of an attribute. Various attribute selection
methods which are used in data mining process have been benchmarked by
Hall and Holmes (2003). Among the attribute selection techniques we mainly
focus on the information gain attribute ranking technique which is simplest
and fastest. Entropy is a statistical measure of uncertainty in any information
system. The entropy-based attribute selection method is mostly used for the
same purpose in which one minimizes the entropy value and thereby max-
imizes the information gain. The main advantage of this method is that it
includes all the attributes in its analysis and is useful when the context is
many-valued (MV) and decision-oriented information system. So we deem it
is suitable to apply the entropy-based attribute selection method to the
problem of current study.

Shannon derived and used the concept of information entropy to deter-
mine the level of information gain provided by each attribute of the dataset
(Shannon 1948). The notion of entropy plays a vital role in the analysis of
uncertain information. Theoretical models of probabilistic distributions fail
to depict the scenario of datasets if they contain uncertain information.
Hence the notion of entropy has several real-life applications. Rifkin (1980)
analyzed the social and political problems by the use of entropy. In (Oruç,
Kuruoğlu, and Vupa 2009), from the questionnaire-type dataset the differ-
ences in the levels of anxiety between male and female were studied using
entropy on few attributes and therein the authors cite various applications of
entropy in the field of psychology.

In this article our main focus is on the compression of numerous concepts
arising out of a large information system. The motivation for the compres-
sion of concepts can be summarized as follows:

● Identification and classification of a set of attributes can determine a set
of outcomes that are useful for knowledge reduction process.

● In many information systems the underlying rules and inherent rela-
tionships between the attributes are very difficult to handle.

● The extraction of useful knowledge from large number of concepts is a
complex process and sometimes such systems do not yield any useful
outputs.
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Our compression process of concepts is based on the degree of importance
of an attribute with respect to other attributes in any context. The degree of
importance of an attribute can be determined by the measure of its informa-
tion gain (Shannon 1948), and hence the attributes can be prioritized accord-
ingly. The primary understanding of the precedence order is to express a type
of relative importance of attributes. The precedence order of attributes thus
determined plays a vital role in the process of concepts compression. The
notion of formal concepts which are compatible with the attribute priorities
is introduced in this article. The main benefit of considering such formal
concepts is the compression of the set of formal concepts. This leads to a
legible structure of formal concepts (clusters) extracted from original
concepts. The set of concepts is compressed using the precedence order
constraint which is determined out of entropy values. An algorithm namely
Entropy based concept compression (ECC) is developed for this purpose and
presented in Table 1. Further, similarity measures between the actual and
compressed concepts are examined using the deviance analysis and percen-
tage error calculation on the deviance of input weights of concepts. From the
experiments, it is found that the compressed concepts subsume association
rules to the maximum extent.

The remainder of this article is organized as follows: we emphasize the
necessity of knowledge compression and provide an overview of the develop-
ment of knowledge discovery in back ground study. Also we outline various
methodologies adopted with the aim of knowledge compression/reduction

Table 1. Algorithm-entropy based concept compression (ECC).
Input: A decision context K = (G, M = C[ {d}, I)
Output: Compressed set of concepts BR(G, M, I)
//To compute the entropy of decision attributes

1. HðDÞ ¼ �Pk¼1

t
pklog2ðpkÞ

//To compute the entropy of conditional attributes and their information gain
2. for each attribute Ci 2 C doHðCiÞ ¼ �Pj¼1

v
pijHðSijÞ

Compute GðCiÞ ¼ HðDÞ � HðCiÞ
end for
//To sort the attributes ‘C’ in the non-increasing order based on their information gain

3. for each Ci in C doGðCiÞ � GðCiþ1Þ//instance with max information gain is ranked 1st in the list
rank G(Ci)
end for
//To relabel the attributes such that Ci represents the attributes in the ith place of precedence order C1>
C2 >. . . > Cm.

4.for each Ciin C do
Ci > Ci+1
end for
//To determine the compressed concepts for consecutive attribute pair

5. for each pair of consecutive attributes Ci, Ci+1 do
Bi, i+1(G, M, I): = {(A, B) � B(G, M, I) |Ci, Ci+1 2 B}, i = 1, 2, . . .,m-1.
end for
//To obtain the final set of compressed concepts

6. BR(G, M, I) = [m�1

i¼1
Bi;iþ1ðG;M; IÞ
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using concepts involved in FCA. The basic notions of FCA and Information
Entropy Theory are described in the preliminary section. We next propose
Entropy based concept compression (ECC) algorithm to determine the infor-
mation gain of each attribute and accordingly prioritize the attributes involved
in the context. We also mentioned and use certain measurements pertaining to
the quality of compressed concepts. Finally, the proposed method of concept
compression is illustrated with a real life example context.

Background

Compressing the number of concepts obtained from FCA is an important
and challenging task. The process of determining and organizing the set of all
formal concepts exhibits exponential behavior in the worst case (Cheung
2004; Kuznetsov 2001). Moreover determining the number of concepts and
their hierarchy may become a difficult task in the analysis of the inherent
knowledge (Rice and Siff 2001). In specific, the necessary facets which are
effectively searched for, can be hidden in innumerable irrelevant details. In
many situations such as knowledge extraction, machine learning, ontology
construction and others it is vital to have the chance to build an abstracted
version of the concepts at a higher level. Indeed, the issue of determining the
concepts or concept lattice of a known size and complexity which can reveal
the relevant features in the field of application is one of the essential
problems of FCA (Dias and Vieira 2013). Some of the contributions toward
concept reduction are outlined below.

Kumar and Srinivas (2010) have reduced the size of the concept lattices
using fuzzy k–means clustering (FKM). For this purpose, they have reduced
the context matrix (object-attribute matrix) and constructed quotient lattices
using equivalence relations which are derived by means of FKM Clustering.
Ch, Dias, and Vieira (2015) have addressed the issue of knowledge reduction
in FCA, based on non-negative matrix factorization of the original context
matrix. Li, Li, and He (2014) have attempted to compress a concept lattice
arising from incomplete contexts using k-medoids clustering. Recently, Singh
and Kumar (2016) reduced a concept lattice using different subset of attri-
butes as information granules. The authors (Belohlavek and Macko 2011;
Belohlavek and Vychodil 2009) have proposed a method for concept reduc-
tion in which, attribute dependency (AD) formulas are determined from the
background knowledge and those concepts which do not obey these AD
formulas are removed. Then attributes are assigned weights according to the
user preferences. Finally values of formal concepts are obtained; those formal
concepts with greater values are regarded more important. Few studies
(Li, He, and Zhu 2013; Singh, Cherukuri, and Li 2015) have recently utilized
the concept of entropy-based FCA. Singh, Aswani Kumar, and Gani (2016)
have concentrated on decreasing the number of formal concepts in FCA with
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fuzzy attributes using entropy. Li, He, and Zhu (2013) have proposed
entropy-based weighted concept lattice using information entropy and
deviance analysis. According to this method weights are determined to the
attributes based on the entropy theory, then each concept is identified with
an intent average value and deviance analysis is computed for each concept.
Further threshold ranges are fixed for deviance measure and the concepts are
reduced according to their range.

For reducing a concept lattice’s complexity Dias and Vieira (2013)
presented the Junction Based Object Similarity approach for replacing groups
of similar objects by prototypical ones and introduced two measures such as
fidelity and descriptive loss to measure the degree of equivalence between the
original formal context and the reduced formal context for evaluating reduc-
tion methods. They have illustrated the method from a tuberculosis symp-
toms database which is carried out at two stages. At the first stage the formal
context is reduced by the use of implications expressed in the original formal
context. The resulting context is reduced by the use of expert rules (back-
ground knowledge) and the effects before and after the reduction are ana-
lysed in the next stage. Recently Li et al. (2017) have studied a comparison of
reduction in formal decision contexts.

In the study of FCA, reduction of objects and attributes plays an important
role in knowledge discovery. Lv, Liu, and Li (2009) proposed a method for
attribute reduction from formal concepts using concept lattice. In their
analysis, the extents of concepts are studied and formulas concerning
significances of attributes are obtained which form the basis for the conclu-
sion if an attribute set is a reduction set of concept lattice. This heuristic
information serves the attribute reduction process in FCA. Zhang et al.
(2012) have analyzed frequent weighted concept lattices and studied their
algebraic properties. Further they have introduced a virtual node into the
graphical design of FWCL (frequent weighted concept lattice) in order to
retain its completeness. Using the least frequent upper bound and greatest
frequent lower bound of the FWCL they further developed an algebraic
system of FWCL and studied its properties. They also established its whole-
ness of knowledge discovery. Another interesting measure towards quality of
concept is concept stability. According to Kuznetsov and Obiedkov (2002) in
order to evaluate the performance of new algorithm for FCA, a well distin-
guished set of information sources is required. The stability measure was
used by several researchers to reduce the number of formal concepts. Some
of them are (Kuznetsov 2007; Roth, Obiedkov, and Kourie 2008). The
computation of the stability index is expensive due to the need to calculate
the subsets of the extent or intent of each formal concept. Along this line,
Babin and Kuznetsov (2012) propose an approximation using Markov
chains. The measure of stability of concepts is often used for selecting
concepts as biclusters of similar objects.
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Analogous to the method of attribute reduction, various methods on
object reduction are also studied by researchers. Li et al. (2014) have com-
pressed the objects of a formal decision context using concept lattices to
determine the non-redundant decision rules of the original context. Some of
the available methods in literature require background knowledge which may
not be available and perhaps may not be reliable. Further, the reduction rate
of attributes seems to be large in several methods and hence the resulting
reduced knowledge may not provide the original information with full entity.
In this article, we have developed a new model for concept reduction which
requires no prior knowledge and is easy to determine.

Preliminaries

Formal concept analysis

Formal concept analysis is a mathematical framework introduced by Rudolf
Wille (1982). It is based on mathematical order theory and on the theory of
complete lattices. This model is used for data analysis i.e. for investigating
and processing the given information explicitly (Davey and Priestley 2002;
Ganter and Wille 1999). FCA has been used in several fields, such as data
analysis, knowledge representation and object-oriented class identification
tasks (Priss 2006). Any interested reader may refer few references for knowl-
edge representation schemes by use of FCA (Kumar 2011, 2012; Kumar,
Ishwarya, and Loo 2015; Kumar and Singh 2014; Kumar and Sumangali
2012; Priss 2006; Shivhare and Cherukuri 2016; Sumangali and Kumar
2013, 2014).

Basic notions of concepts and concept hierarchies
The study of FCA starts with a data collection table called as (formal) context
which is described by a table of crosses. A context K is defined by a triple
(G, M, I), where G and M are two sets called objects and attributes respec-
tively, and I is the incidence relation between G and M.

For example in the context shown in Table 3, the elements of G and M
represent patients and their symptoms respectively. If an object g in G
possesses an attribute m in M it is denoted by (g, m) 2 I or gIm and we
say that “the patient g has the symptom m”.

For A � G and B � M, we define
A0 :¼ fm 2 Mj ðg; mÞ 2 I; "g 2 A g(i.e., the set of attributes common to
the objects in A).
B0 :¼ f g 2 Gj ðg; mÞ 2 I; "m 2 B g(i.e., the set of objects that have all
attributes in B).
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In the presented example (in Table 3), A’ can be thought of as a set of
symptoms common to all the patients A and, similarly, B’ is the set of
patients possessing the common symptoms in B. A concept of the context
(G, M, I) is a pair (A, B) where A � G, B � M, such that B0 ¼ A. We call A
the extent and B the intent of the concept (A, B). Thus, a concept is identified
by its extent and intent: the extent consists of all objects belonging to the
concept while the intent contains all attributes shared by the objects.

For the given context K = (G, M, I), let B(G, M, I) denote the set of all
concepts of K. For the concepts (A1, B1) and (A2, B2) in B(G, M, I) we write
(A1, B1) � (A2, B2), iff A1 � A2 orB1 � B2. The set of formal concepts is
organized by the partial order relation � (Wille 1982). Hence, the set of all
formal concepts of a context K with the subconcept-superconcept relation
always constitutes a complete lattice and is called as a concept lattice denoted
by L: = (B(K); � ). The infimum and supremum of an arbitrary set of concepts
ðOt;AtÞt2T for any indexed set T in any concept lattice L: = (B(K); � ) are
defined as follows:

Inf^t�TðOt;AtÞ ¼ ð\t�TOt; ð[t�TAtÞ00Þ

Sup_tεTðOt;AtÞ ¼ ðð[tεTOtÞ00;\tεTAtÞ

Table 2. Many-valued medical diagnosis information system.
Patients Cough Vomiting Cold severing Nasal bleeding Temperature Delirium Fever

P1 1 2 2 3 5 3 1
P2 2 3 1 3 4 3 2
P3 3 1 2 3 6 3 1
P4 1 2 2 1 4 3 2
P5 3 1 2 1 5 3 2
P6 3 2 1 1 4 3 1
P7 1 1 2 2 4 3 2
P8 2 3 1 2 6 3 1
P9 1 1 3 3 5 3 1
P10 2 2 2 2 5 3 1

Table 3. Formal context derived from Table 2.
C V CS NB T

C1 C2 C3 V1 V2 V3 CS1 CS2 CS3 N1 N2 N3 T4 T5 DE F T6

P1 X X X X X X X
P2 X X X X X X
P3 X X X X X X X
P4 X X X X X X
P5 X X X X X X
P6 X X X X X X X
P7 X X X X X X
P8 X X X X X X X
P9 X X X X X X X
P10 X X X X X X X
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where Ot ¼ fAjðA;BÞ 2 ðOt;AtÞg and At ¼ fBjðA;BÞ 2 ðOt;AtÞg.
A concept lattice can be represented graphically by means of lattice

diagrams which can be produced by using software tools. ConExp
(http://sourceforgenet/projects/conexp) is one of the popular tools for
FCA, which has been used in our experiments. Each node of the lattice
diagram represents a concept. From a concept lattice, one can also
understand the relationship between the concepts. The connection
between any two nodes in the concept lattice represents the subcon-
cept-superconcept relation between the corresponding concepts, the
upper one being superconcept and the lower one being its subconcept.
A hidden concept on which no object/attribute label is shown denotes
that neither objects nor attributes are introduced at that node. Instead, it
is the combination of objects in the ascending path from the bottom and
the attributes in the descending path from the top.

Many-valued contexts and conceptual scaling
Several objects in real life are described by factors or attributes whose values
are multiple in nature such as shape, color, country, and gender. Generally,
attributes are represented by the presence or absence of some properties. But,
this representation scheme is not suitable in case of MV attributes when
compared with that of single-valued attributes. To overcome such difficulty
in the representation scheme of context, MV context representation scheme
is followed. MV contexts can be effectively handled using FCA (Carpineto
and Romano 2004; Ganter and Wille 1999). Such contexts usually contain
attribute-value in pairs. A MV context consists of quadruple (G, M, V, I),
where G is a set of objects, and M is a set of MV attributes, V is a set of
attribute values, and a ternary relation I between the sets G, M, and V
(i.e., I � G�M � V) such that (g, m, v) 2 I and (g, m, w) 2 I implies
v = w. The expression (g, m, v) 2 I is read as “the attribute m possesses the
value v for the object g.” The MV attributes can be considered as partial map
from G into V, written as m(g) = v.

Unlike binary-valued contexts, concept lattices cannot be determined
instantly for MV contexts. Hence, one has to convert a MV context into a
binary-valued context and this conversion process is termed as conceptual
scaling according to Ganter and Wille (1989). Such a modified context is
known as the derived context. Normally, a conceptual scale is employed on a
single attribute m, and in this case the scale forms a basis for the formal
context. A scaled MV context ððG;M;V; IÞ; ðSmjm 2 MÞÞ, is an ordered pair
that consists of MV context (G, M, W, I), and a set of scales ðSmjm 2 MÞ.
From this MV context, the standard scaling method namely plain scaling
creates the derived context,
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K :¼ ðGfðm; nÞjm 2 M; n 2 Mmg; JÞ where gJðm; nÞiffmðgÞ Imnðg 2 G;m
2 M; n 2 MmÞ:

Several researchers have studied MV contexts using FCA. Messai et al.
(2008) have defined MV formal concepts for MV contexts for the first time.
In their view MV concept lattices have higher precision levels from which
multi-level conceptual clustering can be formed. This approach is useful to
improve the efficiency of information retrieval task that possesses complex
queries. Assaghir et al. (2009) have presented a method for classifying objects
having MV attributes using threshold values on the difference between two
attribute values within the same attribute class.

Association rule mining
Besides the schematic lattice representation of knowledge, FCA also produces
association rules. Association rules are the simple form of knowledge dis-
covery which are easily understandable and provide information in a com-
pact way. An association rule P ! Q where P, Q � M means that those
objects having all attributes from P also have all attributes from Q. From any
concept lattice the association rules are commonly determined from two
bases of implications namely, Duquenne-Guigues (DG) base and
Luxenberger base; the former has 100% confidence level while the latter
has less than 100% confidence level (Stumme 2002; Zhang and Wu 2011).
The DG basis implication has been used in the validation process of the
compressed concepts in this article.

Information entropy

In Information theory, entropy denotes the measure of uncertainty present in
a random variable. This measure was introduced by Claude E. Shannon
(1948) and it denotes the average unpredictability of a random variable
which is considered as equivalent to the content of information. It is mea-
sured in bits. If “X” is a random variable with set of possible outcomes xi then
P(xi) is the probability of the outcome X ¼ xi. If “X” is uniformly distributed
with n values then PðX ¼ xiÞ ¼ 1

n .

Shannon expressed the information entropy valueH as,H ¼ �Pm
i¼1

pilogmðpiÞ
In the context of binary variables, measurement is made in bits and hence

m is taken as 2.

Some terms and notions in entropy theory
Any decision-based information system can be considered as a formal con-
text K = (G, M, I), where G is the set of objects and M ¼ C[Df g is the
disjoint classes of attributes C = {C1,C2, . . .., Cm} and D = {d} called
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conditional attributes and decision attributes, respectively. The relation I is
called the incidence relation of the context G�M. We next explain the
procedure for computing information entropy and information gain.

Let dk,, k = 1, 2, . . .,t. be the decision class of the context. The expected
Information or Entropy H(D) in a given context is given by

HðDÞ ¼ �
Xt

k¼1

pk log2ðpkÞ (1)

One can note that log function to the base2 is used since the information is
encoded in bits. For each k = 1, 2, . . .,t, pk is the probability that an absolute
sample belongs to decision class dk and is equal to sk/n, where sk is the
number of objects belonging to decision class k and n is the cardinality of the
objects belonging to the context.

Let attribute Ci have v distinct values {ci1, ci2,. . ., civ}. Then for each condi-
tional attribute Ci, the set of objects “O” can be partitioned into v subsets Sij,
j = 1, . . ., v such that each set “Sij” consists of those objects having attribute
value “cij”. Let “sij” be the cardinality of the set “Sij” i.e. sij= |Sij|

Let “sijk” i = 1, 2, . . ., m, be the number of those objects in the set Sij which
belong to the decision class dk . Then the entropy value for each subset “Sij”
in the attribute class Ci is given by

HðSijÞ ¼ �
Xt

k¼1

sijk=sij log2ðsijk=sijÞ (2)

Let pij, i = 1, 2, . . ., m, j = 1, 2, . . ., v denote the probability of an object in
Conditional class Ci, to possess the attribute value “cij.” Then, pij = sij/n.

Then expected value of information entropy based on the attribute Ci is
defined as follows:

HðCiÞ ¼ �
Xv

j¼1

pijHðSijÞ (3)

The information gain for any attribute Ci, i = 1,. . ., m is expressed by the
formula

GðCiÞ ¼ HðDÞ � HðCiÞ (4)

After computing the information gain of each condition attribute, the
attribute with the highest information gain is regarded as the most informa-
tive and the most discriminating attribute of the given set. In the proposed
method we make use of the information gain values of attributes to rank
them. Attributes having higher information gain are considered to be impor-
tant. Hence we prioritize the attributes in the decreasing order of the values
of information gain.
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Proposed method—Entropy based concept compression (ECC)

In our concept compression algorithm, we first determine the precedence
order for the attribute. Then the method of compression of concepts begins
from the original set of concept and then removes those concepts which are
not obeying immediate sub-super attribute priority relations that are to be
determined by using entropy precedence relation. Finally we get the com-
pressed concept set. The algorithm can be described as follows:

Now, we discuss theoretical aspects of the proposed algorithm. Let “c” be the
set of all concepts, “m” be the number of objects, “t” is the number of decision
attributes, “n” is the number of conditional attributes, and “v” is the attribute
values. To compute the entropy of decision attribute it takes O(mt). Similarly,
to compute the entropy of conditional attributes, it takes O(nvmt). As H(Sij)
takes the complexity O(mt) and calculating Pij requires the complexity O(v). H
(Sij).. i.e O(vmt). This should be performed for all conditional attributes “n”.
So, the required total time is O(nvmt). Therefore the entropy of conditional
attributes requires O(nvmt) time. By using an efficient sorting algorithm, we
can sort the conditional attributes in O(nlogn) time. Relabeling requires O(n)
time. Set of compressed concepts can be done in O(cn) time. Finally, we can
implement the algorithm in O(nvmt)+O(cn) time.

BR(G, M, I) forms the compressed set of concepts based on entropy
precedence order. In this algorithm, we determine the information gain
and hence the precedence order of the attributes in the first two steps. In
the third step we rank and relabel the attributes of the context. The last two
steps of the algorithm compress the set of all concepts using precedence
order of attributes determined earlier. The next discussion is about the
quality of compressed concepts.

Measurement of quality of compressed concepts

General methods of concept reduction/compression similar to those formu-
lated in (Belohlavek and Macko 2011; Cheung 2004; Soldano et al. 2010) have
given a view of information often illustrate losses due to the reduction. Hence
statistical methods are used in the validation process of the proposed
method. In order to achieve this aim we define a suitable similarity evalua-
tion measure of formal concepts based on the average intent weights using
the metric of percentage error calculation.

Any context often contains some important attributes. The importance of
an attribute is measured in terms of its average intent weight. The statistical
fit of any model relative to the mean data can be determined by the use of
deviance-based tests. Likelihood ratio tests are based upon the deviance
measures and it is used in the process of decision-making. We use these
measures to validate the proposed method of concept compression. Li, He,
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and Zhu (2013) have suggested intent weight average measure and deviance
of an intent which focus on measuring the attributes. For more readability,
we provide the definitions of the measures:

Definition 1: Intent weight of a concept
For any object pðbi=ajÞ is called the probability of object aj to possess the

corresponding attribute bi. The expected (average) value of the attribute bi is
denoted by EðbiÞ. The probability and the weight value are computed as in
(Csiszar 2008).

EðbiÞ ¼ �
Xn
j¼1

pðbi=ajÞlog2 pðbi=ajÞ (5)

wi ¼ EðbiÞPm
i¼1

EðbiÞ
(6)

For any concept (A, B), we define (weight(B)) as the arithmetic average of
the weights of attributes contained in B.

weightðBÞ ¼ 1
Bj j

XBj j

i¼1

wi (7)

where Bj j is the cardinality of the attribute intent set B. If Bj j = 1 then B
will be a single attribute intent else B is called as multi-attribute intent.
Clearly the weight wi is in a normalized form. We realize that in practical
applications weight(B) does not include any significance on the deviation
between all the intents. Hence the produced extraction of knowledge may not
be conducive to the sense of an interested user. To obviate this shortcoming
the following measure is used in the analysis.

Definition 2: Deviance analysis
We introduce an analysis of deviance to determine the significance of the
multi-attribute intent weight value. This deviance analysis explores the level
of each wi deviating from weight(B). To this end, we compute the deviation
analysis as in (Li, He, and Zhu (2013). The deviation D(B) of the weight
values of the attributes in intent B from their mean weight value as defined
below is called as the deviance measure of the concept (A, B).

DðBÞ ¼
0 ; if n ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
n�1

Pn
i¼1

ðwi � weightðBÞÞ2
s

; else

8><
>: (8)

Definition 3: Percentage error calculation
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The accuracy rate between two models can be studied using percentage error
calculation. The variation between the approximate and actual values can be
expressed as a percentage of the actual values by using percentage error
calculation. It helps us to identify the closeness of the measurement variation
between the approximate and actual values of any model. We compute the
percentage error of deviance, according to the statistical method used in
(Rooker and Gorard 2007). We use the same to compute percentage error
between the measures of deviance on compressed and original sets of
concepts.

Let d = average deviance value of intents in original concepts and
d0= average deviance value of intents in reduced concepts.
Take v ¼ max d; d0f g
The percentage error is defined as

δ ¼ d � d0

v

����
����� 100 (9)

If the absolute error is negligible (less than 10%) then the model is
considered to be accurate and the compressed concept is regarded to be
more valid (Rooker and Gorard 2007).

Experimental analysis

To demonstrate the proposed method, we consider the standard medical
information system used by Tripathy, Acharjya, and Cynthya (2013) shown
in Table 2.

The given data are pertinent to the illness of fever. It pertains to 10
patients undergoing medical diagnosis process. Rows of the table are
labeled by patients (objects) and columns by symptoms (attributes) that
are used to analyze the illness. The (i, j)th entry in the table corresponds to
the value of the jth attribute possessed by the ith patient. Attributes of the
data table are divided into two disjoint groups called conditional and
target attributes. This information system contains six conditional attri-
butes namely Cough, Vomiting, Cold Severing, Nasal Bleeding,
Temperature, Delirium; and there is a predicted (target) attribute that
confirms the illness of fever.

From the classical view of the medical information system, the attribute
values which are usually in practice are always, seldom, never, normal, high,
and very high. To make the medical diagnosis context simpler, attribute values
1, 2, 3, 4, 5, and 6 are assigned to these attributes, respectively (Tripathy,
Acharjya, and Cynthya 2013). Also, the authors have used the values 1 and 2 to
predict the presence and absence of fever illness, respectively. However, these
assignment of values are optional and do not affect the analysis. Each attribute
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varies in its degree of measure with respect to each patient according to the
parameter that he/she may earn. In this context the parameter values for the
set of attributes are: Cough -{1, 2, 3},Vomiting- {1, 2, 3}, Cold severing- {1, 2, 3},
Nasal bleeding- {1, 2, 3}, Temperature -{4, 5, 6}, Delirium- {3} and finally
decision attribute fever-{1, 2}. We modify the MV medical information system
into a binary-valued formal context using conceptual scaling discussed in
preliminary section, to obtain a derived context as shown in Table 3.

The abbreviations used are: C—Cough; V—Vomiting; CS—Cold Severing;
NB—Nasal Bleeding; T—Temperature; DE—Delirium

In this modified context an attribute having multiple characteristics is split into
the number of sub attributes and the attribute values are marked or unmarked by
the presence or absence of sub characteristics as the case may be. For instance, the
object patient 1 can be seen as described by the six attributes as follows: C—Cough
(always); V—Vomiting (seldom); CS—Cold Severing (seldom); NB—Nasal
Bleeding (Never); T—Temperature (high); DE—Delirium(never), and F—Fever
(yes). The derived context serves as a bit-vector representation, each patient
(factor) is assigned a set of 17 bits (one bit for each value of the attributes). We
next execute the proposed algorithm described in earlier section for the medical
information context presented in Table 3.

Step 1: Information gain of attributes

We first compute the information gain of attributes using the entropy theory
to the context presented above. The notations followed below are according
to information entropy section.

Here there are two decision classes. Therefore t = 2 and D = {d1, d2},
We observe that n = 10, s1 = 6, s2 = 4
Thus, p1 = 6/10 = 0.6, p2 = 4/10 = 0.4
The information entropy of decision attribute fever is computed using

Equation (1) and we get

HðDÞ ¼ 0:97

The label Ci, i = 1, 2. . . m corresponds to the m attributes of the system.
Since we have six such conditional attributes, m = 6.

Let us consider the first attribute C1 = Cough (i = 1).
The v distinct values of the attribute Ci are labeled as {ci1, ci2,. . ., civ,}. Here

C1 has v = 3
distinct attribute values {1, 2, 3}.
With respect to the conditional attribute C1, the set of objects “O” can be

partitioned into v = 3 subsets Sij, j = 1, 2, 3 according to the attribute values
and sij= |Sij|.

Thus S11 = {p1, p4, p7, p9}, S12 = {p2, p8,p10} and S13 = {p3, p5, p6}
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Consequently, s11 = |S11| = 4, s12 = |S12| = 3, s13 = |S13| = 3,
We denote by “sijk” i = 1, 2, . . ., m; j = 1,2,. . ., v; k = 1,2 the number of

those objects in the set Sij which belong to the decision class dk .

When i = 1, j = 1, 2, 3.
We have, s11 = 4, s111 = 2, s112 = 2
s12 = 3, s121 = 2, s122 = 1
s13 = 3, s131 = 2, s132 = 1.
The entropy value for each subset Si jin the attribute class Ci is computed

using Equation (2)

HðS11Þ ¼ �
X2

k¼1

s11k
s11

log2
s11k
s11

¼ �½0:5 log2 0:5þ 0:5 log2 0:5� ¼ �1

Similarly we get,

HðS12Þ ¼ 0:922
HðS13Þ ¼ 0:922

Further, the probability of an object in Conditional class Ci, to possess the
attribute value “cij” i = 1,2,. . .,6, j = 1,2, . . ., v is given by pij = sij/n.

For i = 1, p11 = s11/n = 4/10 = 0.4

p12 ¼ s12=n ¼ 3=10 ¼ 0:3

p13 ¼ s12=n ¼ 3=10 ¼ 0:3

The expected value of information entropy based on the attribute Ci is
computed using Equation (3)

Thus,

HðC1Þ ¼ �
X3

j¼1

p1jHðS1jÞ ¼ p11HðS11Þ þ p12HðS12Þ þ p13HðS13Þ

= 0.4 × 1 + 0.3 × 0.922 + 0.3 × 0.922
= 0.9532
We compute the information gain of each condition attribute using

Equation (4).
Thus the information gain for the attribute C1 = Cough is

GðC1Þ ¼ HðDÞ � HðC1Þ
= 0.97–0.9532 = 0.017.

From this information gain value, we conclude that the conditional attri-
bute C1 = Cough can reduce the decision-making uncertainty by its gain
value “0.017” for classifying information system K. The attribute with the
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highest information gain is the most informative and the most discriminating
attribute of the given set.

In the same manner, the function of other conditional attributes for
reducing decision-making uncertainty can be summed up as shown in
Table 4.

H(Ci) in the table is the information entropy of the ith conditional attribute
involved in the medical diagnosis process. The values of information gain
G(Ci) in the last row HðDÞ �HðCiÞindicate the precision level of an
attribute.

Step 2: Entropy-based precedence relation of conditional attributes in the
context

An attribute with higher precision value plays a vital role in the decision-making
environment and hence ranked high. According to this rule we get, Temperature
> Cold Severing > Nasal Bleeding > Vomiting > Cough > Delirium. Where P >Q
implies, P is more important than Q. The information gain values of attributes
presented in Table 4 lead us to decide that the temperature symptom is the most
important attribute in the decision-making environment. The precedence order
of attributes according to the gain measure is:

T>CS>NB>V>C>DE

From this precedence order we revise the labeling of attributes. Now we
get, C1 = Temperature, C2 = Cold Severing, C3 = Nasal Bleeding,
C4 = Vomiting, C5 = Cough, C6 = Delirium

Step 3: Underlying concepts in the context

Formal concept analysis explores all the concepts present in the given context
from which one can determine the intents and extents of each concept. All such
concepts form a concept lattice. The whole conceptual structure consists of
concepts and relations. Each concept (A, B) can be represented by means of a
node with its related extent and intent. If a set of objects A is attached to some

Table 4. Results obtained during the computation of information gain values.

Ccough Cvomiting Ccoldsevering Cnasalbleeding Ctemperature Cdelirium

H1 1 1 0.922 0.922 – –
H2 0.922 0.8112 1 0.922 – –
H3 0.922 1 0 0.8112 – 0.969
H4 – – – – 0.8112 –
H5 – – – – 0.8112 –
H6 – – – – 0 –
HðCiÞ 0.9532 0.924 0.8766 0.8777 0.648 0.969
GðCiÞ ¼ HðDÞ � HðCiÞ 0.017 0.046 0.094 0.093 0.322 0.001
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concept, then all the objects of A lie in extents of all concepts, reachable by
ascending paths in the lattice diagram from this concept to unit concept (top
element) of lattice. If a set of attributes B is attached to some concept, then the
attributes of B occur in intents of all concepts, reachable by descending paths from
this concept to zero concept (bottom element) of lattice. The concepts of the
context Table 3 are determined using Next closure algorithm (Carpineto and
Romano 2004) and listed in Table 5.

Table 5. Concepts derived from the formal context Table 3.
Concept # ({Extent};{Intent})

C1 ({φ};{C1, C2, C3, V1, V2, V3, CS1, CS2, CS3, N1, N2, N3, T4, T5, T6, DE})
C2 ({P8};{C2, V3, CS1, N2, T6, DE})
C3 ({P10};{C2, V2, CS2, N2, T5, DE})
C4 ({P2};{C2,V3,CS1,N3,T4,DE})
C5 ({P3};{C3, V1,CS2, N3, T6,DE})
C 6 ({P9};{C1,V1,CS3, N3, T5, DE})
C7 ({P7};{C1, V1, CS2, N2, T4, DE})
C8 ({P1};{C1, V2, CS2, N3, T5, DE})
C9 ({P5};{C3, V1, CS2, N1, T5, DE})
C10 ({P4};{C1, V2, CS2, N1, T4, DE})
C11 ({P6};{C3, V2, CS1, N1, T4, DE})
C12 ({P8, P10};{C2, N2, DE})
C13 ({P8, P3};{T6, DE})
C14 ({P8, P2};{C2, V3, CS1, DE})
C15 ({P3, P9};{V1, N3, DE})
C16 ({P10, P7};{CS2, N2, DE})
C17 ({P9, P7};{C1, V1, DE})
C18 ({P9, P1};{C1, N3, T5, DE})
C19 ({P3, P1};{CS2, N3, DE})
C20 ({P9, P5};{V1, T5, DE})
C21 ({P10, P1};{V2, CS2, T5, DE})
C22 ({P2, P6};{CS1, T4, DE})
C23 ({P3, P5};{C3, V1, CS2, DE})
C24 ({P1, P4};{C1, V2, CS2, DE})
C25 ({P4, P7};{C1, CS2, T4, DE})
C26 ({P4, P5};{CS2, N1, DE})
C27 ({P4, P6};{V2, N1, T4, DE})
C28 ({P5, P6};{C3, N1, DE})
C29 ({P2, P8, P10};{C2, DE})
C30 ({P7, P8, P10};{N2, DE})
C31 ({P1, P2, P3, P9};{N3,DE})
C32 ({P2, P8, P6};{CS1,DE})
C33 ({P3, P5, P7};{V1, CS2, DE})
C34 ({P1, P5, P10};{CS2, T5, DE})
C35 ({P1, P4, P7};{C1, CS2, DE})
C36 ({P1, P4, P10};{V2, CS2, DE})
C37 ({P3, P5, P6};{C3, DE})
C38 ({P2, P7, P4, P6};{T4, DE})
C39 ({P4, P5, P6};{N1, DE})
C40 ({P3, P5, P7, P9};{V1, DE})
C41 ({P1, P4, P7, P9};{C1, DE})
C42 ({P1, P5, P9, P10};{T5, DE})
C43 ({P3, P5, P7, P1, P4, P10};{CS2, DE})
C44 ({P1, P4, P6, P10};{V2,DE})
C45 ({P1, P2, P3, P4, P5, P6, P7, P8, P9, P10};{DE})
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These set of all concepts can be represented as a complete lattice under the
partial order relation � as shown in Figure 1. We can identify from Figure 1
that, the lattice structure is of height 5 and contains 45 concepts connected
by 102 edges. Any two connected nodes in the concept lattice represents the
sub-superconcept relation between the corresponding concepts, the upper
one being the superconcept and the lower one being its subconcept.
Attributes disseminate beside the boundaries to the bottom of the lattice
while objects disseminate to the top of the lattice.

Step 4: Concepts obeying immediate sub-super attribute priority

For any two consecutive attributes Ci > Ci+1, We set Bi, i+1(G, M, I) = {(A, B)
� B(G, M, I) |Ci, Ci+1 2 B}, i = 1, 2, . . .,m-1
In other words the set of concepts Bi, i+1(G, M, I) includes the set of

concepts from B(G, M, I) in which both the consecutive attributes Ci,Ci+1 are
present. We list the set of discarded concepts which contain no two con-
secutive attributes in the above prescribed precedence relation order in
Table 6. The precedence relation T > CS implies that attribute T is the
immediate predecessor of attribute CS. The compressed concepts for each
pairwise precedence relation are given in Table 7.

Figure 1. Concept lattice derived from the context Table 3.
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Step 5: Precedence relation-based concept compression

The set of concepts BR(G, M, I) = [m�1

i¼1
Bi;iþ1ðG;M; IÞ forms the set of

required entropy precedence order-based reduced concepts. It is interest-
ing to note that, the concepts which obey the precedence order relation
with respect to at least one of precedence order pairs of attributes are
retained in the final reduced set of concepts. In other words those con-
cepts which do not obey the precedence order relation of attributes with
respect to any of the precedence order pairs only are removed from the
set of concepts.

In this context we obtain 31 concepts using the above formula which
constitute the set of reduced concepts. They are: C1, C2, C3, C4, C5, C6,
C7, C8, C9, C10, C11, C12, C14, C15, C16, C17, C18, C19, C21, C22, C23,
C24, C25, C26, C27, C28, C29, C34, C35, C37, and C41.

We assume that in any context the attributes present in any object
should obey at least any one of the precedence order pair relations. So, the
same must hold for the attributes for an intent of any concept. Then the

Table 6. Precedence relation-based discarded concepts.
Immediate
predecessors Removed concepts

C > DE C13, C15, C16, C 19, C 20, C 21, C 22, C 26, C 27, C 30, C31, C 32, C 33, C34, C36, C38,
C39, C40, C42, C43, C44

V > C C12, C13, C15, C16, C18, C19, C20, C21, C22, C25, C26, C27, C28, C29, C30, C31, C32,
C33, C34, C35, C36, C37, C38, C39, C40, C41, C42, C43, C 44

NB > V C12, C13, C14, C16, C17, C18, C19, C20, C21, C22, C23, C24, C25, C26, C28, C29, C30,
C31, C32, C33, C34, C35, C36, C37, C38, C39, C40, C41, C42, C43, C44

CS > NB C12, C13, C14, C15, C17, C18, C20, C21, C22, C23, C24, C25, C27, C28, C29, C30, C31,
C32, C33, C34, C35, C36, C37, C38, C39, C40, C41, C42, C43, C44

T > CS C12, C13, C14, C15, C16, C17, C18, C19, C20, C21, C22, C23, C24, C26, C27, C28, C29,
C30, C31, C32, C33, C35, C36, C37, C38, C39, C40, C41, C42, C43, C44

Table 7. Retained concepts for each precedence relation. C56 = {(A,B) 2 B (G, M, I) |C, DE 2 B}.
Immediate predecessors Retained concepts

C > DE
C56 = {(A,B) 2 B (G, M, I) |C,
DE 2 B}

C1, C2, C3, C4, C5, C6, C7, C8, C9, C10, C11, C12, C14, C17, C18, C23, C24,
C25,C28, C29, C35, C37, C41

V > C
C45 = {(A,B) 2 B (G, M, I) |V,
C 2 B}

C1, C2, C3, C4, C5, C6, C7, C8, C9, C10, C11, C14, C17, C23, C24

NB > V
C34 = {(A,B) 2 B (G, M, I) |
NB, V 2 B}

C1, C2, C3, C4, C5, C6, C7, C8, C9, C10, C11, C15, C27

CS > NB
C23 = {(A,B) 2 B (G, M, I) |
CS, NB 2 B}

C1, C2, C3, C4, C5, C6, C7, C8, C9, C10, C11, C16, C19, C26

T > CS
C12 = {(A,B) 2 B (G, M, I) |T,
CS 2 B}

C1, C2, C3, C4, C5, C6, C7, C8, C9, C10, C11, C21, C22, C25, C34
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desired set of final compressed concepts must be the union of such
concepts due to each precedence order pair. Thus out of the 45 total
number of original concepts, after compression the number of concepts
obtained is 31.

Measurement of quality of compressed concepts

In this process we firstly compute measurements pertinent to attributes such
as, probability, expectation, and weight of each attribute using Equations (5)
and (6). The results are shown in Table 8.

Secondly, we compute the measurements pertinent to concepts, namely
intent average value, weight and deviance for each concept using Equations
(7) and (8). The results are displayed in the Table 9. We tabulate the
measurements corresponding to compressed concepts, in Table 10.

Percentage error calculation for validation process

The percentage error of deviance for the compressed concepts from medical
diagnosis context is obtained using Equation (9), we getP

DðIÞ ¼ 1:681 and therefore, d =1.681/45 =0.0373
and

P
DðI0Þ ¼ 1:113, and d0=1.113/31 =0.0359

where I and I0 respectively denote the sets of intents of the original and
compressed set of concepts. v ¼ max 0:0373; 0:0359f g

δ ¼ 0:0373� 0:0359
0:0373

����
����� 100 ¼ 0:002

0:0373
� 100 ¼ 0:053� 100 ¼ 5%

The negligible percentage error explores that those intents which have
been removed from the original concepts during the process of concept

Table 8. Acquisition method for the single intent weight value.
Attribute P(X) E(X) Wi

C1 0.4 0.529 0.071
C2 0.3 0.521 0.07
C3 0.3 0.521 0.07
V1 0.4 0.529 0.071
V2 0.4 0.529 0.071
V3 0.2 0.464 0.062
CS1 0.3 0.521 0.07
CS2 0.6 0.442 0.059
CS3 0.1 0.332 0.044
N1 0.3 0.521 0.07
N2 0.3 0.521 0.07
N3 0.4 0.529 0.071
T4 0.4 0.529 0.071
T5 0.4 0.529 0.071
T6 0.2 0.464 0.062
DE 1 0 0
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compression have greater deviance measures of intent weights than those of
existing ones, which in turn implies that compressed concepts have less
deviance of intent weights between them. Therefore we may conclude that
the compressed concepts provide the information about the system to the
maximum level.

Table 9. The intent weight value and importance deviation value of the original concepts.
Concept
# Intent

Intent average
value

Weight
(I) D(I)

C1 C1, C2, C3, V1, V2, V3, CS1, CS2, CS3, N1, N2, N3, T1, T2,
T3, DE

0.063 0.063 0.018

C2 C2, V3, CS1, N2, T3, DE 0.056 0.056 0.028
C3 C2, V2, CS2, N2, T2, DE 0.057 0.057 0.028
C4 C2,V3,CS1,N3,T1,DE 0.057 0.057 0.028
C5 C3,V1,CS2, N3, T3,DE 0.056 0.056 0.028
C6 C1,V1,CS3, N3, T2, DE 0.055 0.055 0.029
C7 C1, V1, CS2, N2, T1, DE 0.057 0.057 0.028
C8 C1, V2, CS2, N3, T2, DE 0.057 0.057 0.028
C9 C3, V1, CS2, N1, T2, DE 0.057 0.057 0.028
C10 C1, V2, CS2, N1, T1, DE 0.057 0.057 0.028
C11 C3, V2, CS1, N1, T1, DE 0.059 0.059 0.029
C12 C2, N2, DE 0.047 0.047 0.04
C13 T3, DE 0.031 0.031 0.044
C14 C2, V3, CS1, DE 0.051 0.051 0.034
C15 V1, N3, DE 0.047 0.047 0.041
C16 CS2, N2, DE 0.043 0.043 0.038
C17 C1, V1 DE 0.047 0.047 0.041
C18 C1, N3, T2, DE 0.053 0.053 0.035
C19 CS2, N3, DE 0.043 0.043 0.038
C20 V1, T2, DE 0.047 0.047 0.041
C21 V2, CS2, T2, DE 0.05 0.05 0.034
C22 CS1, T1, DE 0.047 0.047 0.041
C23 C3, V1, CS2, DE 0.05 0.05 0.034
C24 C1, V2, CS2, DE 0.05 0.05 0.034
C25 C1, CS2, T1, DE 0.05 0.05 0.034
C26 CS2, N1, DE 0.043 0.043 0.038
C27 V2, N1, T1, DE 0.053 0.053 0.035
C28 C3, N1, DE 0.047 0.047 0.04
C29 C2, DE 0.035 0.035 0.049
C30 N2, DE 0.035 0.035 0.049
C31 N3,DE 0.036 0.036 0.05
C32 CS1,DE 0.035 0.035 0.049
C33 V1, CS2, DE 0.043 0.043 0.038
C34 CS2, T2, DE 0.043 0.043 0.038
C35 C1, CS2, DE 0.043 0.043 0.038
C36 V2, CS2, DE 0.043 0.043 0.038
C37 C3, DE 0.035 0.035 0.049
C38 T1, DE 0.036 0.036 0.05
C39 N1, DE 0.035 0.035 0.049
C40 V1, DE 0.036 0.036 0.05
C41 C1, DE 0.036 0.036 0.05
C42 T2, DE 0.036 0.036 0.05
C43 CS2, DE 0.03 0.03 0.042
C44 V2, DE 0.036 0.036 0.05
C45 DE 0 0 0
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One can understand that the proposed method best suits as much as the
number of intents for each concept is more than one. In case of concepts
having single attribute intents, the proposed method of compression has
comparatively little higher rate of percentage error. But, yet the suitability
of the proposed method need not be disregarded even on this particular case
since the knowledge extracted from this compressed concepts is similar to
that of original concepts. As an example one can see that, the compressed
concepts also include all the concepts which bound all the association rules.
We illustrate this scenario with the help of following example used in
(Fan, Liu, and Tzeng 2007).Table 11 is a summary of reviewers’ report for
ten papers submitted to a journal. The table details ten papers evaluated by
means of four attributes: O: originality, P: presentation, TS: technical sound-
ness, and E: overall evaluation (the decision attribute).

The binary-valued formal context derived from the MV context shown in
Table 12. Table 13 shows the computation of information gain values. From

Table 10. The intent weight value and importance deviation value of the retained concepts
Concept # Intent Intent average value Weight(I) D(I)

C1 C1, C2, C3, V1, V2, V3,
CS1, CS2, CS3, N1, N2,
N3, T1, T2, T3, DE

0.063 0.063 0.018

C2 C2, V3, CS1, N2, T3, DE 0.056 0.056 0.028
C3 C2, V2, CS2, N2, T2, DE 0.057 0.057 0.028
C4 C2,V3,CS1,N3,T1,DE 0.057 0.057 0.028
C5 C3, V1,CS2, N3, T3,DE 0.056 0.056 0.028
C6 C1,V1,CS3, N3, T2, DE 0.055 0.055 0.029
C7 C1, V1, CS2, N2, T1, DE 0.057 0.057 0.028
C8 C1, V2, CS2, N3, T2, DE 0.057 0.057 0.028
C9 C3, V1, CS2, N1, T2, DE 0.057 0.057 0.028
C10 C1, V2, CS2, N1, T1, DE 0.057 0.057 0.028
C11 C3, V2, CS1, N1, T1, DE 0.059 0.059 0.029
C12 C2, N2, DE 0.047 0.047 0.04
C14 C2, V3, CS1, DE 0.051 0.051 0.034
C15 V1, N3, DE 0.047 0.047 0.041
C16 CS2, N2, DE 0.043 0.043 0.038
C17 C1, V1 DE 0.047 0.047 0.041
C18 C1, N3, T2, DE 0.053 0.053 0.035
C19 CS2, N3, DE 0.043 0.043 0.038
C21 V2, CS2, T2, DE 0.05 0.05 0.034
C22 CS1, T1, DE 0.047 0.047 0.041
C23 C3, V1, CS2, DE 0.05 0.05 0.034
C24 C1, V2, CS2, DE 0.05 0.05 0.034
C25 C1, CS2, T1, DE 0.05 0.05 0.034
C26 CS2, N1, DE 0.043 0.043 0.038
C27 V2, N1, T1, DE 0.053 0.053 0.035
C28 C3, N1, DE 0.047 0.047 0.04
C29 C2, DE 0.035 0.035 0.049
C34 CS2, T2, DE 0.043 0.043 0.038
C35 C1, CS2, DE 0.043 0.043 0.038
C37 C3, DE 0.035 0.035 0.049
C41 C1, DE 0.036 0.036 0.05

272 SUMANGALI K ET AL.



the computations yield the precedence order of attributes is P > T > O. The
formal context given in Table 12 yields the following concept lattice with 27
concepts. These set of all concepts can be represented as a complete lattice
under the partial order relation � as shown in Figure 2. The compressed
and discarded concepts are shown in Table 14.

Further, similar to quality measurements carried out with medical diagnosis
context, one can obtain the performance results of the proposed method on
article evaluation context. It is found that, in this case, the sum of deviances of
the intents of the original and compressed concepts are respectively,P

DðIÞ ¼ 2:027and d = 2.027/27 = 0.075074P
DðI0Þ ¼ 1:783and d0= 1.783/18 = 0.099056

Thus, the percentage error is found to be δ ’ 24%.

Table 11. Many-valued article evaluation information system.
Objects Originality Presentation Technical soundness Overall evaluation

1 4 4 3 4
2 3 2 3 3
3 4 3 2 3
4 2 2 2 2
5 2 1 2 1
6 3 1 2 1
7 3 2 2 2
8 4 1 2 2
9 3 3 2 3
10 4 3 3 3

Table 12. Formal context derived from Table 11.
O P TS E

O2 O3 O4 P1 P2 P3 P4 T2 T3 1 2 3 4

1 X X X X
2 X X X X
3 X X X X
4 X X X X
5 X X X X
6 X X X X
7 X X X X
8 X X X X
9 X X X X
10 X X X X

Table 13. Results obtained during the computation of information gain values.
CO CP CT

H1 1 0.91829 —
H2 1 0.91829 1.55664
H3 1.5 0 0.91829
H4 1.5 0 —
HðCiÞ 1.4 0.55098 1.36514
GðCiÞ ¼ HðDÞ � HðCiÞ 0.4464 1.29542 0.48126
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Underlying association rules after concept compression

We next validate the compressed concepts using association rules (refer pre-
liminary section). For the concept lattice Figure1 obtained from the given
context Table 3, there are 53 implications derived according to the DG base.
These implications are contained within 18 concepts of FCA. We find that all
these 18 concepts are contained in the compressed set of concepts BR(G, M, I).
Table 15 lists these concepts and their set of implications. The association rules
that underlie after the compression of concepts in the case of second example
may be considered as an exercise to the readers. After evaluation it is found that
there are 17 implications according to the DG base. These implications are
contained within 7 concepts of FCA. It is found that all these 7 concepts are
contained in the compressed set of concepts BR(G, M, I). Therefore one can
form a basis for further reduction of concepts.

Conclusions

There are several methods available in the literature for knowledge reduction in
FCA. In this article, we concentrate on compressing the concepts of many-valued

Figure 2. Concept lattice derived from Table 12..

Table 14. Removed and retained concepts based on precedence relation.
Immediate
predecessors Removed concepts Retained concepts

T > O C13, C14, C16, C18, C19, C21, C22, C23, C24,
C25, C26, C 27

C1, C2, C3, C4, C5, C 6, C7, C8, C9, C10,
C11, C12, C15, C17, C20

P > T C12, C13, C14, C15, C17, C20, C21, C22, C23,
C24, C25, C26, C27

C1, C2, C3, C4, C5, C 6, C7, C8, C9, C10,
C11, C16, C18, C19
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Table 15. Concepts and the (subsisting) set of impli-
cations derived from Table 3.
Concept # Implications with 100% confidence

C2 CS1 N2 DE ! C2 V3 T6
C2 T6 DE ! V3 CS1 N2
CS1 T6 DE ! C2 V3 N2
N2 T6 DE ! C2 V3 CS1

C3 C2 V2 DE ! CS2 N2 T5
C2 CS2 DE ! V2 N2 T5
V2 N2 DE ! C2 CS2 T5
C2 T5 DE ! V2 CS2 N2
N2 T5 DE ! C2 V2 CS2

C4 C2 N3 DE ! V3 CS1 T4
CS1 N3 DE ! C2 V3 T4
C2 T4 DE ! V3 CS1 N3
N3 T4 DE ! C2 V3 CS1

C5 C3 N3 DE ! V1 CS2 T6
V1 CS2 N3 DE ! C3 T6
C3 T6 DE ! V1 CS2 N3
V1 T6 DE ! C3 CS2 N3
CS2 T6 DE ! C3 V1 N3
N3 T6 DE ! C3 V1 CS2

C6 CS3 DE ! C1 V1 N3 T5
C1 V1 N3 T5 DE ! CS3

C7 C1 V1 CS2 DE ! N2 T4
C1 N2 DE ! V1 CS2 T4
V1 N2 DE ! C1 CS2 T4
V1 T4 DE ! C1 CS2 N2
N2 T4 DE ! C1 V1 CS2

C8 V2 N3 DE ! C1 CS2 T5
C1 CS2 N3 T5 DE ! V2

C9 V1 N1 DE ! C3 CS2 T5
C3 T5 DE ! V1 CS2 N1
V1 CS2 T5 DE ! C3 N1
N1 T5 DE ! C3 V1 CS2

C10 C1 N1 DE ! V2 CS2 T4
C11 C3 V2 DE ! CS1 N1 T4

C3 CS1 DE ! V2 N1 T4
V2 CS1 DE ! C3 N1 T4
CS1 N1 DE ! C3 V2 T4
C3 T4 DE ! V2 CS1 N1

C14 V3 DE ! C2 CS1
C2 CS1 DE ! V3

C18 C1 N3 DE ! T5
C1 T5 DE ! N3
N3 T5 DE ! C1

C21 V2 T5 DE ! CS2
C23 C3 V1 DE ! CS2

C3 CS2 DE ! V1
C24 C1 V2 DE ! CS2
C25 C1 T4 DE ! CS2

CS2 T4 DE ! C1
C27 V2 N1 DE ! T4

V2 T4 DE ! N1
N1 T4 DE ! V2

C45 {} ! DE
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decision context. For this purpose, we have proposed an algorithm namely ECC
algorithm which uses entropy-based precedence order of attributes. We have
validated the reliability of the compressed concepts using percentage of error on
deviance measures of intent weights. Our analysis found that the method is
suitable to reduce the complexity of the concept lattice namely the number of
concepts (nodes) with enough control on the consistency and the amount of
information produced. We noted that the set of compressed concepts contains all
the implications of the original concept lattice, and thus assures the lossless
information in the output. As a future work, one can perform such compressions
on different types of training datasets.
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