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ABSTRACT

The purpose of this paper is to introduce and investigate weak form of G-open sets in G-metric
spaces, namely Gβ-open sets. The relationships among this form with the other known sets are
introduced. We give the notions of the interior operator, the closure operator and frontier operator
via Gβ-open sets.
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1 INTRODUCTION

The concept of a metric space was introduced by
Frechet in 1906, [1]. It has a very important basic
role in mathematics and its application. Many
mathematical concepts that can be discussed
in this space.The first attempt to generalize the
ordinary distance function to a distance of three
points was introduced by Gahler, [2, 3], in 1993.

K. S. Ha, et al; [4], showed that a 2-metric is not
a generalization of the usual notion of a metric. It
was mentioned by Gahler, [2], that the notion of
a 2-metric is an extension of an idea of ordinary
metric and geometrically (x, y, z) represents the
area of a triangle formed by the points x,y and
z in X as its vertices. But this is not always
true.A.Sharma, [5], showed that (x, y, z) = 0 for
any three distinct points x, y, z ∈ R2. B. C. Dhage
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in 1963 introduced a new class of generalized
metrics called D-metrics, [3],. However, several
errors for fundamental topological properties in
a D-metric space were found by Z.Mustafa and
B.Sims, [6]. Due to these considerations, Z.
Mustafa and B.Sims , [7], proposed a more
appropriate notion of a generalized metric space,
called G-metric space.

This paper is organized as follows. Section
2 is devoted to some preliminaries. Section
3 introduces the concept of Gβ-open sets by
utilizing the G-open balls. Furthermore, the
relationship with the other known sets will be
studied. In Section 4 we introduce the concepts
of the interior operator, the closure operator and
frontier operator via Gβ-open sets.

2 PRELIMINARIES

Definition 2.1. [1] Let X be any nonempty set. A function d : X × X → [0,∞) is called a metric
function on X if it satisfies the following three conditions for all x, y, z ∈ X:

1. (positive property) d(x, y) ≥ 0 with equality if and only if x = y;

2. (symmetric property) d(x, y) = d(x, y);

3. (triangle inequality) d(x, z) ≤ d(x, y) + d(y, z).

A pair (X, d), where d is a metric on X is called a metric space.

Definition 2.2. [6] Let X be a nonempty set and R be the set of real numbers. A function G :
X ×X ×X → R is called a G-metric function on X if it satisfies the following:

1. G(x, x, y) > 0 for all x ̸= y ∈ X;

2. G(x, y, z) = 0 if and only if x = y = z;

3. G(x, x, y) ≤ G(x, y, z) for every x, y, z ∈ X with y ̸= z;

4. G(x, y, z) = G(p(x, y, z)) for every x, y, z ∈ Xand for any permutation p of x, y, z;

5. G(x, y, z) ≤ G(x, u, u) +G(u, y, z) for every x, y, z, u ∈ X.

If G is a G-metric function on X, then the pair (X,G) is called a G-metric space.

Example 2.3. [7] Let (R, d) be the usual metric space. Define Gs by Gs(x, y, z) = d(x, y) + d(y, z) +
d(x, z) for all x, y, z ∈ R. Then it is clear that (R, Gs) is a G-metric space.

Example 2.4. [7] Let X = {a, b}. Define G on X × X × X by G(a,a,a) = G(b,b,b) = 0, G(a a,b) =
1,G(a,b,b) = 2.

Example 2.5. [7] Let (R, G) be G-metric space defined by G(x, y, z) = max{|x− y|, |y− z|, |z− x|}.

Definition 2.6. [8] Let (X,G) be a G-metric space, x ∈ X and A ⊆ X. The open ball with center x
and radius ϵ in metric space (X,G) is denoted by BG(x, ϵ) and defined by

BG(x, ϵ) = {y ∈ X|d(x, y, y) < ϵ}.

The closed ball with center x and radius ϵ in G-metric space (X,G) is denoted by CG(x, ϵ)and defined
by

CG(x, ϵ) = {y ∈ X|d(x, y, y) ≤ ϵ}.
The set A is called an open set in G-metric space (X,G) if for every x ∈ A, there is ϵ > 0 such
that BG(x, ϵ) ⊆ A. The set A is called closed set in metric space (X,G) if X − A is an open set in
G-metric space (X,G).

Theorem 2.7. [8] Every G-open ball BG(x, ϵ), x ∈ X, ϵ > 0 is an open set in X.
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Theorem 2.8. [7] Let (X,G) be a G-metric space, then for any x ∈ X and ϵ > 0, we have.
(1) If G(y, x, x) < ϵ then x, y ∈ BG(x, ϵ);
(2) If y ∈ BG(x, ϵ) then there exists a δ > 0 such that BG(y, δ) ⊆ BG(x, ϵ).

Definition 2.9. [8] ClG(A)is called the G-closure of A if it is the intersection of all G-closed sets
containing A.

Definition 2.10. [8] A set U in a G-metric space X, is said to be closed if its complement X - U is
G-open.

3 Gβ-OPEN SETS

Definition 3.1. Let (X,G) be a G-metric space and A ⊆ X.A point x ∈ X is called a G-point of A in
G-metric space (X,G) if there is δ > 0 such that for every y ∈ BG(x, δ),

BG(y, ϵ) ∩G ̸= ∅ ∀ϵ > 0.

Gβ(A) denotes the set of all Gβ-points of A in G-metric space (X,G)

Example 3.2. Let (R, G) be G-metric space defined by G(x, y, z) = max{|x−y|, |y− z|, |z−x|}. Let
A = (0, 2) and B = Q be that set of rational numbers. Note that Gβ(A) = (0, 2) and Gβ(B) = R.

Theorem 3.3. Let (X,G) be any G-metric space and A,B ⊆ X.Then

1. Gβ(ϕ) = ϕ and Gβ(X) = X;

2. if A ⊆ B Then Gβ(A) ⊆ Gβ(B);

3. Gβ(A ∩B) ⊆ Gβ(A) ∩Gβ(B);

4. Gβ(A) ∪Gβ(B) ⊆ Gβ(A ∪B).

Proof. 1. It is clear from the definition ,we get that Gβ(ϕ) = ϕ and Gβ(X) = X.

2. Let A ⊆ B and x ∈ Gβ(A). Then is δ > 0 such that for every y ∈ BG(y, ϵ)∩A ̸= ∅, for all Since
A ⊆ B. Then BG(y, ϵ) ∩B ̸= ∅ , for all ϵ > 0. That is, x ∈ Gβ(B). Then Gβ(A) ⊆ Gβ(B).

3. Since A ∩ B ⊆ A. Then by part (2) Gβ(A ∩ B) ⊆ Gβ(A). Similar Gβ(A ∩ B) ⊆ Gβ(B) Then
Gβ(A ∩B) ⊆ Gβ(A) ∩Gβ(B).

4. Since A ⊆ (A∪B). Then by part (2) Gβ(A) ⊆ Gβ(A∪B). Similar Gβ(B) ⊆ Gβ(A∪B) Then
Gβ(A) ∪Gβ(B) ⊆ Gβ(A ∪B).

Definition 3.4. Let (X,G) be a G-metric space. A subset A ⊆ X is called a Gβ-open set in G-metric
space (X,G) if for every x ∈ A,

BG(x, ϵ) ∩ Gβ(A) ̸= ∅ ∀ϵ > 0.

A subset A ∈ X is called a Gβ-closed set in G-metric space (X,G) if X − A is a Gβ-open set in
G-metric space (X,G).

Example 3.5. In Example(3.2), the sets A and B are Gβ-open sets. Note that any finite sub sets of
R are not Gβ-open set.

Theorem 3.6. Every G-open set is a Gβ-open set.
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Proof. Let A be any G-open set in G-metric space (X,G). Let x ∈ A be arbitrary point. Then there
is δ > 0 such that BG(x, ε) ⊆ G. For every y ∈ BG(x, ε), y ∈ BG(x, ε)(y) and y ∈ A for every ε > 0.
That is, BG(y, ε) ∩G ̸= ∅ for every ε > 0. Hence A is Gβ-open set.

The converse of above theorem need not be true.

Example 3.7. In Example(3.2), note that for the closed interval A = [a, b], Gβ(A) = (a, b). Then it is
clear to check that A is a Gβ-open set. Take x = a or x = b. Note that x ∈ A but there is no G-open
ball with center x contained in A. That is, A is not G-open set in (R, G).

The intersection of two Gβ-open sets no need to be Gβ-open set. In Example(3.2), set o f rational
numbers Q is a Gβ-open set but not G-open set in (R, G) and the set IR ∪ {q} is a Gβ-open set in
(R, G), where IR is the set of irrational numbers and q is any rational number, but Q∩(IR∪{q}) = {q}
is not Gβ-open set. That is, the collection of all Gβ-open sets in G-metric space (X,G) does not form
topology on a set X.

The following theorem shows that the intersection of a G-open set and a Gβ-open set is a Gβ-open
set.

Theorem 3.8. The intersection of a G-open set and a Gβ-open set is a Gβ-open set.

Proof. Let A be G-open set and B be Gβ-open set in G-metric space in (X,G). Let x ∈ A ∩ B be
arbitrary point. Then x ∈ A and x ∈ B. Then there are δ1 > 0 and δ2 > 0 such that BG(x, δ1) ⊆ A and
for every y ∈ BG(x, δ2), BG(y, ε)∩B ̸= ∅ for every ε > 0. Take δ = min{δ1, δ2} > 0. Then BG(x, δ) ⊆
A and for every y ∈ BG(x, δ), BG(y, ε)) ∩ B ̸= ∅ for every ε > 0. Now for every y ∈ BG(x, δ) and
since A is G-open set, then there is εy > 0 such that BG(y, εy)) ⊆ A and BG(y,min{δ1, δ2})∩B ̸= ∅.
Since BG(y,min{δ1, δ2})∩B ⊆ BG(y, ε))∩A∩B, then BG(y, ε)∩ (A∩B) ̸= ∅ for every ε > 0. That
is A ∩ B is G-open set. Hence x ∈ Gβ(A ∩ B). Then BG(y, ε) ∩Gβ(A ∩ B) ̸= ∅ for all ε > 0. There
for A ∩B is Gβ-open set.

Theorem 3.9. The union of any family of Gβ-open sets is Gβ-open set.

Proof. Let Hλ be a Gβ-open in G-metric space (X,G) for all λ ∈ ∆. Let x ∈ ∪λ∈∆Hλ be an
arbitrary point. Then there is at least λ0 ∈ ∆ such that x ∈ Hλ0 . Since Hλ0 is a Gβ-open set then
BG(x, ε) ∩ Gβ(Hλ0) ̸= ∅ for all ε > 0. Hence by Theorem (3.3), Gβ(Hλ0) ⊆ Gβ(∪λ∈∆). Hence
BG(x, ε) ∩Gβ(∪λ∈∆Hλ) ̸= ∅ for all ε > 0. That is ∪λ∈∆Hλ is Gβ-open set.

4 Gβ-OPEN OPERATORS

In this section, we define the interior operator, the closure operator and frontier operator via Gβ-open
sets.

Definition 4.1. Let (X,G) be a G-metric space and A ⊆ X. The G-closure operator of A is denoted
by ClβG(A) and defined by

ClβG(A) = ∩{H ⊆ X : A ⊆ H and H is Gβ-closed set}.

The G-interior functor of A is denoted by IntβG(A) and defined by

IntβG(A) = ∪{H ⊆ X : H ⊆ A and H is Gβ-open set}.
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Remark 4.2.

1. By Theorem(3.9), ClβG(A) is a Gβ-closed set and IntβG(A) is Gβ-open set in G-metric space
(X,G).

2. For a G-metric space (X,G) and A ⊆ X, it is clear from the definition of ClβG(A) and IntβG(A)
that A ⊆ ClβG(A) and IntβG(A) ⊆ A.

Theorem 4.3. For a G-metric space (X,G) and A ⊆ X, ClβG(A) = A if and only if A is a Gβ-closed
set.

Proof. Let ClβG(A) = A. Then from definition of ClβG(A) and Theorem(3.9), ClβG(A) is a Gβ-closed
set and A is a Gβ-closed set. Conversely, we have A ⊆ ClβG(A) by Remark(4.2). Since A is a
Gβ-closed set, then it is clear from the definition of ClβG(A), ClβG(A) ⊆ A. Hence A = ClβG(A).

Theorem 4.4. For a G-metric space (X,G) and A ⊆ X, and IntβG(A) = A if and only if A is a
Gβ-open set.

Proof. Let A be Gβ-open set. Then for all x ∈ A, we have x ∈ A ⊆ A. That is, A ⊆ IntβG(A). Then
A = IntβG(A) from Remark(4.2). The converse is trivial.

Theorem 4.5. For a G-metric space (X,G) and A ⊆ X, x ∈ ClβG(A) if and only if for all Gβ-open set
B containing x, B ∩A ̸= ∅.

Proof. Let x ∈ ClβG(A) and B be any Gβ-open set containing x. If B∩A = ∅ then A ⊆ X−B. Since
X −B is a Gβ-closed set containing A, then ClβG(A) ⊆ X −B and so x ∈ ClβG(A) ⊆ X −B. Hence
this is contradiction, because x ∈ B. Therefore B ∩A ̸= ∅.

Conversely, Let x /∈ ClβG(A). Then X − ClβG(A) is a G-open set containing x. Hence by
hypothesis, [X − ClβG(A)] ∩A ̸= ∅. But this is contradiction, because X − ClβG(A) ⊆ X −A.

Theorem 4.6. For a G-metric space (X,G) and A ⊆ X, x ∈ IntβG(A) if and only if there is Gβ-open
set B such that x ∈ B ⊆ A.

Proof. Let x ∈ IntβG(A) and take B = IntβG(A). Then by Theorem(4.5) and definition of IntβG(A) we
get that B is a Gβ-open set and by Remark(4.2), x ∈ B ⊆ A. Conversely, let there is Gβ-open set B
such that x ∈ B ⊆ A Then by definition of IntβG(A), x ∈ B ⊆ IntβG(A).

Theorem 4.7. For a G-metric space (X,G) and A,B ⊆ X, the following hold:

1. If A ⊆ B then ClβG(A) ⊆ ClβG(B);

2. ClβG(A) ∪ ClβG(B) ⊆ ClβG(A ∪B);

3. ClβG(A ∩B) ⊆ ClβG(A) ∩ ClβG(B);

4. ClβG(A) ⊆ ClG(A).

Proof. 1. Let x ∈ ClβG(A). Then by Theorem(4.5), for all Gβ-open set C containing x, C ∩A ̸= ∅.
Since A ⊆ B then C ∩B ̸= ∅. Hence x ∈ ClβG(B). That is, ClβG(A) ⊆ ClβG(B).

2. Since A ⊆ A ∪ B and B ⊆ A ∪ B, then by part(1), ClβG(A) ⊆ ClβG(A ∪ B) and ClβG(B) ⊆
ClβG(G ∪B). Hence ClβG(G) ∪ ClβG(B) ⊆ ClβG(A ∪B).

3. Since A ∩B ⊆ A and A ∩B ⊆ B, then by part(1), ClβG(A ∩B) ⊆ ClβG(A) and ClβG(A ∩B) ⊆
ClβG(B). Hence ClβG(A ∩B) ⊆ ClβG(A) ∩ ClβG(B).

4. It is clear from Theorem(4.5) and from every G-open set is Gβ-open set.

In the above theorem ClβG(A ∪B) ̸= ClβG(A) ∪ ClβG(B) as it is shown in the following example.
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Example 4.8. Let (R, G) be G-metric space, where

G(x, y, z) = max{|x− y|, |y − z|, |z − x|}

and (R, d) is usual metric space. Let A = IR and B = Q − [{2}], where Q is the set of rational
numbers, IR is the set of irrational numbers and 2 is any rational number. Since A and B are Gβ-
closed sets in R. Then ClβG(A) ∪ ClβG(B) = A ∪ B = R− {2}. If R− {2} is Gβ-closed set in R then
{2} is Gβ-open set but {2} is not Gβ-open set and this contradiction. Hence R−{2} is not Gβ-closed
set in R. Since R− {2} ⊆ ClβG(R− {2}) then

ClβG(A ∪B) = ClβG(R− {2}) = R.

Theorem 4.9. For a G-metric space (X,G) and A,B ⊆ X, the following hold:
1. If A ⊆ B then IntβG(A) ⊆ IntβG(B);
2. IntβG(A) ∪ IntβG(B) ⊆ IntβG(A ∪B);
3. IntβG(A ∩B) ⊆ IntβG(B) ∩ IntβG(B);
4. IntG(A) ⊆ IntβG(A).

Proof. 1. Let x ∈ IntβG(A). Then by Theorem(4.6), there is Gβ-open set C such that x ∈ C ⊆ A
Since A ⊆ B then x ∈ C ⊆ B. Hence x ∈ IntβG(B). That is, IntβG(A) ⊆ IntβG(B).

2. Since A ⊆ A ∪ B and B ⊆ A ∪ B, then by part(1), IntβG(A) ⊆ IntβG(A ∪ B) and IntβG(B) ⊆
IntβG(A ∪B). Hence ClβG(A) ∪ IntβG(B) ⊆ IntβG(A ∪B).

3. Since A∩B ⊆ A and A∩B ⊆ B, then by part(1), IntβG(A∩B) ⊆ IntβG(A) and IntβG(A∩B) ⊆
IntβG(B). Hence IntβG(A ∩B) ⊆ IntβG(A) ∩ IntβG(B).

4. It is clear from Theorem(4.5) and from every G-open set is Gβ-open set.

In the last theorem IntβG(A ∩B) ̸= IntβG(A) ∩ IntβG(B) as it is shown in the following example.

Example 4.10. In Example(4.8), take A = Q ∪ {
√
2} and B = IR, where Q is the set of rational

numbers, IR is the set of irrational numbers and
√
2 is any irrational number. Since A and B are

Gβ-open sets in R. Then IntβG(A) ∩ IntβG(B) = A ∩ B = (Q ∪ {
√
2}) ∩ IR = {

√
2}. Since {

√
2} is

not Gβ-open set and IntβG({
√
2}) ⊆ {

√
2} then IntβG(A ∩B) = IntβG({

√
2}) = ∅.

Theorem 4.11. For a G-metric space (X,G) and G ⊆ X, the following hold:
1. IntβG(X −A) = X − ClβG(A);
2. ClβG(X −A) = X − IntβG(A).

Proof. 1. Since A ⊆ ClβG(A), then X −ClβG(A) ⊆ X −A. Since ClβG(A) is a Gβ-closed set then
X − ClβG(A) is a G-open set. Then

X − ClβG(A) = IntβG[X − ClβG(A)] ⊆ IntβG(X −A).

For the other side, let x ∈ IntβG(X−A). Then there is Gβ-open set C such that x ∈ C ⊆ X−A.
Then X − C is a Gβ-closed set containing A and x /∈ X − C. Hence x /∈ ClβG(G), that is,
x ∈ X − ClβG(A).

2. Since IntβG(A) ⊆ A, then X − A ⊆ X − IntβG(A). Since IntβG(A) is a Gβ-open set then
X − IntβG(A)) is a Gβ-closed set. Then

ClβG(X −A) = ClβG[X − IntβG(A)] = X − IntβG(A).

For the other side, let x /∈ ClβG(X − A). Then by Theorem(4.5), there is a Gβ-open set C
containing x such that C ∩ (X − A) = ∅. Then x ∈ C ⊆ A, that is, x ∈ IntβG(A). Hence
x /∈ X − IntβG(A). Therefore X − IntβG(A) ⊆ ClβG(X −A).
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Theorem 4.12. For a subset A ⊆ X of G-metric space (X,G) the following hold:
1. If B is a G-open set in X then ClβG(A) ∩B ⊆ ClβG(A ∩B);
2. If B is a G-closed set in X then IntβG(A ∪B) ⊆ IntβG(A) ∪B.

Proof. 1. Let x ∈ ClβG(A)∩B. Then x ∈ ClβG(A) and x ∈ B. Let D be any Gβ-open set in (X,G)
containing x. By Theorem(3.8), D ∩ B is Gβ-open set containing x. Since x ∈ ClβG(A) then
by Theorem(4.5), (D ∩ B) ∩ A ̸= ∅. This implies, D ∩ (B ∩ A) ̸= ∅. Hence by Theorem(4.5),
x ∈ ClβG(A ∩B). That is, ClβG(A) ∩B ⊆ ClβG(A ∩B).

2. Since B is a G-closed set X then by the part(1) and Theorem(4.11),

X − [IntβG(A) ∪B] = [X − IntβG(A)] ∩ [X −B]

= [ClβG(X −A)] ∩ [X −B]

⊆ ClβG[(X −A) ∩ (X −B)]

= ClβG(X − (A ∪B))

= X − (IntβG(A ∪B)).

Hence IntβG(A ∪B) ⊆ IntβG(A) ∪B.

Theorem 4.13. For a G-metric space (X,G) and A ⊆ X, x ∈ ClG(A) if and only if for all ε > 0,
BG(x, ε) ∩A ̸= ∅.

Proof. Let x ∈ ClG(A) and ε > 0. If BG(x, ε)∩A = ∅ then A ⊆ X −BG(x, ε). Since X −BG(x, ε) is
a G-closed set containing A, then ClG(A) ⊆ X −BG(x, ε) and x ∈ ClG(A) ⊆ X − BG(x, ε). Hence
this is contradiction, because x ∈ BG(x, ε). Therefore BG(x, ε) ∩A ̸= ∅.

Conversely, Let x /∈ ClG(A). Then X − ClG(A) is a G-open set containing x. Then there is ε > 0
such that BG(x, ε) ⊆ X − ClG(A) Hence by hypothesis, BG(x, ε) ∩ A ̸= ∅. But this is contradiction,
because BG(x, ε) ⊆ X − ClG(A) ⊆ X −A.

For a subset A of G-metric space (X,G) the G-frontier operator of A is defined by

Γβ
G(A) = ClβG(A)− IntβG(A).

Theorem 4.14. For a subset A ⊆ X of G-metric space (X,G), the following hold:
1. ClβG(A) = Γβ

G(A) ∪ IntβG(A);
2. Γβ

G(A) ∩ IntβG(A) = ∅;
3. Γβ

G(A) = ClβG(A) ∩ ClβG(X −A).

Proof. 1. Note that

Γβ
G(A) ∪ IntβG(A) = (ClβG(A)− IntβG(A)) ∪ IntβG(A)

= [ClβG(A) ∩ (X − IntβG(A))] ∪ IntβG(A)

= [ClβG(A) ∪ IntβG(A)] ∩ [(X − IntβG(A)) ∪ IntβG(A)]

= ClβG(A) ∩X = ClβG(A).

2. It is clear from the definition of Γβ
G(A).

3. By Theorem(4.11),

Γβ
G(A) = ClβG(A)− IntβG(A) = ClβG(A) ∩ (X − IntβG(A))

= ClβG(A) ∩ ClβG(X −A).
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Corollary 4.15. For a subset A ⊆ X of G-metric space (X,G), Γβ
G(A) is Gβ-closed set in (X,G).

Proof. By Theorem(4.9) and the part(3) of the last theorem.

Theorem 4.16. For a subset A ⊆ X of G-metric space (X,G), the following hold:

1. A is a Gβ-open set if and only if Γβ
G(A) ∩A = ∅;

2. A is a Gβ-closed set if and only if Γβ
G(A) ⊆ A;

3. A is both Gβ-open set and Gβ-closed set if and only if Γβ
G(A) = ∅.

Proof. 1. Let A be a Gβ-open set. Then IntβG(A) = A. Then by Theorem(4.14),

Γβ
G(A) ∩A = Γβ

G(A) ∩ IntβG(A) = ∅

Conversely, suppose that Γβ
G(A) ∩A = ∅. Then

A− IntβG(A) = [A ∩ ClβG(A)]− [A ∩ IntβG(A)]

= A ∩ (ClβG(A)− IntβG(A)) = A ∩ Γβ
G(A) = ∅.

That is, IntβG(A) = A. Hence A is a Gβ-open set.

2. Let A be a Gβ-closed set. Then ClβG(A) = A. Then

Γβ
G(A) = ClβG(A)− IntβG(A) = A− IntβG(A) ⊆ A.

Conversely, suppose that Γβ
G(A) ⊆ A. Then by Theorem(4.14),

ClβG(A) = IntβG(A) ∪ Γβ
G(A) ⊆ IntβG(A) ∪A ⊆ A.

That is, ClβG(A) = A. Hence A is Gβ-closed set.

3. Let A be both Gβ-closed set and Gβ-open set. Then ClβG(A) = A = IntβG(A). Then

Γβ
G(A) = ClβG(A)− IntβG(A) = A−A = ∅.

Conversely, suppose that Γβ
G(A) = ∅. Then ClβG(A)−IntβG(A) = ∅. Since IntβG(A) ⊆ ClβG(A)

then ClβG(A) = IntβG(A). Since IntβG(A) ⊆ A ⊆ ClβA(A) then

ClβG(A) = A = IntβG(A).

That is, ClβG(A) = A. Hence A is both Gβ-closed set and Gβ-open set.

5 CONCLUSION

As we noted that the Gβ-open set is a weak form
of open set in G-metric space, also the reader
can give the notion of the continty property via
Gβ-open sets in G-metric spaces.The reader also
can introduce sepertion axioms connectedness
and compactness properties by using Gβ-open
sets in G-metric spaces.
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