
Journal of Intelligent Learning Systems and Applications, 2015, 7, 58-73
Published Online May 2015 in SciRes. http://www.scirp.org/journal/jilsa
http://dx.doi.org/10.4236/jilsa.2015.72006

How to cite this paper: Lianos, A. and Yang, Y. (2015) Classifying Unstructured Text Using Structured Training Instances and
an Ensemble of Classifiers. Journal of Intelligent Learning Systems and Applications, 7, 58-73.
http://dx.doi.org/10.4236/jilsa.2015.72006

Classifying Unstructured Text Using
Structured Training Instances and an
Ensemble of Classifiers
Andreas Lianos, Yanyan Yang
School of Engineering, University of Portsmouth, Portsmouth, UK
Email: andreas.lianos@port.ac.uk, linda.yang@port.ac.uk

Received 1 April 2015; accepted 23 May 2015; published 26 May 2015

Copyright © 2015 by authors and Scientific Research Publishing Inc.
This work is licensed under the Creative Commons Attribution International License (CC BY).
http://creativecommons.org/licenses/by/4.0/

Abstract
Typical supervised classification techniques require training instances similar to the values that
need to be classified. This research proposes a methodology that can utilize training instances
found in a different format. The benefit of this approach is that it allows the use of traditional clas-
sification techniques, without the need to hand-tag training instances if the information exists in
other data sources. The proposed approach is presented through a practical classification applica-
tion. The evaluation results show that the approach is viable, and that the segmentation of clas-
sifiers can greatly improve accuracy.

Keywords
Ensemble Classification, Diversity, Training Data

1. Introduction
This research proposes a novel ensemble classification methodology. The novelty of the method lies in the abil-
ity to train the classifiers with data that are in a different format from the values that they later classify. The
proposed methodology is presented through a practical application, which serves as a consistent example and an
evaluation framework.

This work is part of a research project that proposes a market-independent recommender system, focusing on
identifying only a handful of products to serve as final recommendations. The aforementioned recommender
system needs to gather information about user needs and then connect them to product attributes. For example
relate “every day use of a camera”, to a sufficient amount of “Megapixels”. As this analysis is not done for
every attribute, the need arises to realize which attributes have an important role in the decision making. To au-

http://www.scirp.org/journal/jilsa
http://dx.doi.org/10.4236/jilsa.2015.72006
http://dx.doi.org/10.4236/jilsa.2015.72006
http://www.scirp.org
mailto:andreas.lianos@port.ac.uk
mailto:linda.yang@port.ac.uk
http://creativecommons.org/licenses/by/4.0/

A. Lianos, Y. Yang

59

tomatically acquire this knowledge, the short bullet-point lists that precede the product’s extended description
are used. Figure 1 contains a snippet of a typical web-page that can help visualize this information. By examin-
ing the bullet-point lists of many products, one can observe which attributes are encountered more often, and
thus deduce which ones are important for the whole product category. The challenge is to develop an appropri-
ate methodology that can correctly match each bullet-point text to a specific attribute.

The difficulty of this task lies in the fact that there are no training data readily available for such bullet-point
texts (bullets). With no known pairs of “bullet→attribute” to train classifiers, supervised classification methods
cannot be used. However, what is available is the structured table of attributes that exists in the same web pages
(Figure 1). This table has two pieces of information, the attribute’s name and the attribute’s value. Closely ob-
serving bullets reveals that they are vaguely constructed by using either the name component of the table, the
value, or both. With this knowledge residing in the table, all that is needed is a methodology that can tap into it.
It seems that there is a gap in the literature on how to tackle the aforementioned problem and utilize data that
exist in a different format from the texts that need to be classified. At the same time using this data is crucial, as
it allows the completion of the task without hand-tagging training instances (i.e. manually classifying bullets).

This work proposes a new classification approach (DICE, Diverse Classifiers Ensemble) that uses multiple
different classifiers1. Each classifier has a unique feature set and can be trained from different training data, which
consequently can be in different formats. That allows each classifier to capture a different “kind” of bullet, i.e.
name based, value based, or combined. The results of the classifiers are integrated together, forming an ensem-

Figure 1. Snapshot from an actual web-page. Important areas are highlighted
with dashed lines.

1For clarity, we will refer to the ensemble as “the ensemble” in contrast to “member classifiers”. DICE will be used to describe the approach
as a whole.

A. Lianos, Y. Yang

60

ble that produces the final result. The classifier being responsible to identify one kind of text has no information
on how to treat the others. As such, classifiers are switched off for the ensemble when their opinion is not rele-
vant. In essence, since there are no training instances for bullets as a whole, there is an attempt to find training
instances that might contain just pieces of it. The ensemble then utilizes only the classifiers that have identified
some pieces of useful information.

To demonstrate this approach a prototype of DICE has been developed. It is based on four classifiers with
unique feature-sets specifically tailored for consumer electronics. Because this work utilizes training data that
are not usable by other methods, there is no baseline for comparison. As such, the performance has been eva-
luated simply by measuring the accuracy (i.e. correctly classified bullets). In addition to standalone testing, the
classifier has been put in context, where its ability to correctly identify the top 7 most important attributes has
been measured. This information can then be used from the discussed recommended system.

Our work contributes to the field of ensemble classification by proposing a methodology that can utilize
training data that are not in the same format with the texts that need to be classified. This opens up a window to
tapping into many data sources that were previously unusable. The proposed methodology differs dramatically
from other ensemble classification approaches such as bagging [1] and boosting [2]. It uses classifiers that are
inherently different from each other, rather than diversified instances of one base classifier. On the way, light
has been shed on what constitutes a proper feature set for classifiers specifically tailored for consumer electron-
ics. Finally, the presented empirical evaluation can be used as a starting point for future researches, by providing
initial parameters.

In the market of consumer electronics the acquired knowledge can be used in multiple ways, such as forming
meaningful comparisons, automatic product scoring, assistance in decision-making and personalized product
recommendations. Making this information available outside specific markets and free from proprietary APIs,
allows for cross-market solutions and third party implementations of the aforementioned tools. In addition, the
methodology can be generalized and transferred to other domains that can utilize bespoke solutions. By allowing
the use of training data that would be otherwise unusable, it would save a considerable amount of time and effort
that would be used in hand-tagging training instances.

The next section discusses how previous research interacts with ours, and it offers some basic reference ma-
terial. Section 3 is a thorough presentation of the proposed approach, followed by a detailed analysis of the fea-
ture set of each classifier and some specifics on their implementation. Section 4 presents the evaluation datasets.
It also contains the results of the evaluation with the relevant discussion. Finally Section 5 summarizes some of
the key points derived from this work, along with future plans and potential improvements.

2. Related Work
The problem of text classification is not new and there is ample literature relating to it (some very interesting
resources are [3]-[5]). The most relevant application comes from information retrieval where documents are
ranked according to their similarity to a given query. To demonstrate how this is relevant, attribute's names can
be treated as documents and bullets as queries. Transferring the technique, attribute’s names can be ranked ac-
cording to their similarity with the given bullet. The limited applicability of these techniques comes from the
fact that a bullet may or may not contain the same words with the attribute’s name. For example the bullet “24
Megapixels” has no similarities with its respective attribute name “Resolution”. As a result looking only at the
attribute’s name makes the correlation between them impossible, rendering a simple application of information
retrieval methodologies ineffective.

To overcome the previous limitation we can borrow from a methodology used to match the fields of one da-
tabase to those of another [6] [7]. This method examines the contents of the database (rather than the table
names) to look for columns whose contents look similar. This however causes the opposite problem of the one
previously mentioned, favoring the bullets that contain values over those that contain names. For example the
bullet “Waterproof”, has no similarities with the respective values of the attribute which tend to be either “yes”
or “no”. In addition, different attributes may have similar values. For example height and width both can be 10
cm, and waterproof and shockproof both may be either yes or no. This opens up a window for false positives,
and as identified by their authors, is a major limitation inherent to the approach [7].

The reason both these methods have limited applicability, is because one cannot be sure which information is
or is not contained in a bullet. At the same time there are no training instances for bullets, so that this informa-
tion cannot be learned automatically. We merge the two approaches and develop an ensemble classification

A. Lianos, Y. Yang

61

model, in order to lift their limitations and utilize their strengths. Ensemble classification is a well established
research area with stable results. Maclin and Opitz [8] have recently shown that the two predominant ensemble
methodologies from the previous century, still outperform single classifiers. Ensemble classification strives to
replace a single classifier with multiple—usually similar—classifiers, whose results are then recombined. The
main diversification points of the various methods are a) how to obtain the member classifiers and b) how to
combine their results.

The well proven methodologies such as bagging [1], boosting [2] [9], and their later variations, meet at a
common point; the member classifiers are similar to each other. Even though this makes direct use of any such
methodologies impossible, there is much to learn from the relevant research. Hansen [10] has shown that for an
ensemble to be successful, member classifiers should be, among other things, diverse. “Diverse” in this context,
means that the classifiers should make different errors given different values to classify. Dietterich [11] has later
explained why this requirement is true. Drawing upon this idea the developed classifiers have completely dis-
tinct feature sets that do not overlap. In truth the classifiers are designed so that where one fails, the other excels.

With the way to obtain the member classifiers set, the interest shifts to the second point; the way that results
of members are combined. The prevailing approach is plurality voting [10], or simple averaging depending on
the type of task [12]. Simple averaging was also used in the initial implementation of bagging [1], but various
studies have since suggested that weighted averaging might improve accuracy [13] [14]. Most weighted average
methodologies however, either assume that the classifiers are similar, or that it is possible to calculate a measure
of the effectiveness of the classifier by using part of the training data. None of these assumptions hold true for
this work. In a nutshell, this happens because the classifiers are trained from the structured table of attributes,
but then classify texts from the bullet-points. Since there is no prior knowledge of where bullet-points should be
classified, the effectiveness of the classifier cannot be calculated without hand tagging data. Creation of artificial
evaluation instances from the training data is guaranteed to suffer from overfitting.

That is not to say that existing methodologies have nothing to offer. Based on the most successful approaches,
a weighted average method is used. Since the weights cannot be calculated from the data, a fixed weighted
scheme is used instead. This is possible because the classifiers themselves are not created dynamically and their
relation can be predetermined. Another approach suggests the use of the perceived confidence of the classifier as
a start for calculating weights [15]. Borrowing from this idea, the results of certain classifiers are completely
negated when their opinions are not relevant.

A lot of work has been done on the classification techniques themselves. Simple Bayesian classifiers have
been found to perform very well, especially with small feature sets [16] [17]. Another popular approach to clas-
sification is Neural Networks. As Neural Networks attempt to find connections between features, they are par-
ticularly effective where features are strongly correlated. They are however expensive to train, especially as the
number of features grow [18] [19]. Finally, Decision Trees is another widely used classification approach [20]
[21]. For the interested reader Kotsiantis et al. [22] have written a thorough review of the most common classi-
fication techniques to date and Xhemali et al. [23] a comparison of Naïve Bays, Neural Networks and Decision
Trees.

Reflecting on the related work, it becomes obvious that even though this research draws upon the ideas and
findings of the existing literature, it cannot be directly compared with any of them. This work discusses how to
tackle the problem of training data being in a different format from the values that they will later classify. Par-
tially addressing this problem by creating multiple but different classifiers, it also examines if these can be used
effectively in an ensemble. There seems to be little knowledge in the existing literature on how to address both
these issues. Concerning the development of feature sets, no literature could be found specifically tailored for
consumer electronics. Naumann et al. [7] discusses an application that matches fields of one database to those of
another. The proposed feature set is rather generic, and as such it has been used as a starting point for value-
based matching.

3. Methodology
3.1. Introduction
This work proposes DICE, a classification approach based on an ensemble of multiple and diverse classifiers.
The aim of DICE is the ability to utilize training data that are not in the same format as the texts that need to be
classified. The presented methodology is tailored around a specific problem, and the developed classifiers target

A. Lianos, Y. Yang

62

consumer electronics. The details of the approach are presented here to create a seamless example of the pro-
posed approach. Our work does not present a generic way that can be transferred as-is to a different context. It
does however suggest a way of tackling the aforementioned problem. Our discussion on the proposed metho-
dology offers valuable insight on what to look for and how to effectively transfer this work. As it might be ob-
vious, the feature sets of the classifiers are tailored around a specific problem and not form part of the genera-
lized approach. In truth, this method can work with any number and type of classifiers. However, the specifics
of each classifier are discussed for multiple reasons: a) it is an opportunity to discuss and explain what to look
for when designing classifiers to work with this approach, b) It offers an insight on what an effective feature set
is for consumer electronics and c) it is mandatory for the reproducibility of the results.

The proposed methodology is applied to data acquired directly from web-pages. Each web-page offers two
pieces of information; the bullet-point list that is used as a short description of the product and the detailed table
of attributes that usually follows. As discussed in Section 1, Figure 1 shows a snippet of a webpage where both
parts are clearly visible. The bullet-point lists of all products are added together, forming a single list that con-
tains all the texts that will be later classified. The tables of attributes of all products are also added together. The
combined table provides on the one hand the training data, and on the other hand the classes, i.e. the list of
possible attributes a bullet might belong to. Essentially the classification process will try to match each bullet to
an attribute.

To predict where a bullet belongs, each individual classifier will calculate a score for every possible attribute.
Even though the attribute with the highest score is selected and becomes the opinion of the classifier, the clas-
sifier will calculate scores for all of them. Since the possible attributes are the same for all classifiers, the only
difference in the outcome of the classifiers is the scores. The way that the score is calculated depends on the
classification model (e.g. naive bays, neural networks, etc.) and does not affect the methodology. For the given
context four classifiers like the above are developed, each using different criteria to decide to which attribute a
bullet refers to. As a result four scores are calculated for every possible attribute, one from each classifier. The
scores are added together using a fixed weighted scheme. Once added, the highest combined score becomes the
opinion of the ensemble. Table 1 shows an example of this procedure. It is interesting to note that the opinion of
the ensemble may be different from the opinions of any of the member classifiers, as demonstrated in Table 1.
This is an advantage of using weighted average over plurality voting.

As a result of the above procedure, every bullet is assigned to an attribute. Measuring the repetition of these
attributes becomes the proposed metric of importance.

Before discussing the details of each classifier, it is mandatory to understand the nature of bullets. Bullets
mainly consist of either the value of an attribute, the name, or both. For example, when browsing for cameras
“4× optical zoom” explicitly mentions both the attribute’s name (optical zoom) and its value (4×). However, if a
tablet is “7 inch” only the value is mentioned, while the attribute’s name (screen size) is implied. On the other
hand “Waterproof” contains only the attribute’s name and the value (yes or no) is completely omitted. Bullets
may also contain connective or promotional words (such as: with, up to, new, amazing, etc.). These words con-
stitute noise since they are not part of the training data. Some bullets may consist purely of noise words (e.g.
Modern look, Amazing offer). Since there is no correct attribute for these bullets their classification is ipso facto
impossible, introducing a baseline error rate. Figure 1 is a screenshot of a web-page marked with further exam-
ples.

Table 1. Example classification of the bullet “24 Megapixels”.

 Optical Zoom Resolution Flash Type

Classifier 1 0.5 0.7 0.8

Classifier 2 0.3 0.4 0.5

Classifier 3 0.5 0.4 0.1

Classifier 4 0.4 0.3 0.2

Ensemble 1.7 1.8 1.6

Each classifier provides a probability score for each attribute. Results are added together for the ensemble. Highlighted in bold are the highest scores
of each classifier, representing the choice each classifier would make if working on its own. In this example, the ensemble would finally classify the
bullet to “Resolution”.

A. Lianos, Y. Yang

63

Training data are acquired from the structured table of attributes of product web-pages (see Figure 1). Each
attribute translates to a triplet consisting of the category name, the attribute name and the value. For example a
few attributes from Figure 1 are the following:

(sensor) resolution = 24.2 megapixels
(general) size = 14 × 16 × 6 cm
In this paper we present the category in brackets. A category is a heading in the table that defines a group of

features. In Figure 1 the visible categories are “overview” and “sensor”. Each pair of category and attribute
name creates a unique class, e.g. “(sensor) resolution”. If no category is found then none is used. Each attribute
(and thus each class) can have multiple values, as these originate from different product web-pages. Because
web-pages don’t always follow the same format, the same attribute may appear multiple times under a slightly
different name or a under a different category. This may result in the creation of different classes for the same
attribute, e.g. “(memory) memory card” and “(general) memory card type”. For the scope of this paper these
attributes are treated as different classes.

3.2. The Classifiers
To utilize the multiple pieces of information contained in bullets four classifiers were developed. They have
widely different feature sets, are implemented by different classification models and are trained with different
data. The combined feature set of all classifiers is able to capture a wide range of characteristics of the bullets.

Separating the classifiers allows the modification of results separately for special cases, essentially pre-en-
coding knowledge into the system. Some rules are used in special cases that completely negate the results of a
classifier. This is one of the major benefits of having distinct classifiers rather than one classifier that aggregates
all the features. Another benefit is the ability to implement each classifier with the most appropriate classifica-
tion model. Apart from the gain in accuracy, this also enhances performance. By keeping each classifier inde-
pendent the process can be easily parallelised. It also allows the use of more efficient models where the com-
plexities of a Neural Network are not needed. Finally, splitting the classifiers allows for training using different
training data. This makes the separation not just beneficial, but mandatory, as it would be impossible to achieve
otherwise. Essentially a bullet might contain data that exist in either training set, and one of the classifiers will
be able to identify it.

3.2.1. The Name Classifier (NC)
The name classifier (NC) matches bullets that either consist of or contain the attribute’s name. To create the
feature set all possible stems from all attribute and category names are extracted. Each stem is then used to
create a boolean feature for the classifier, e.g. “contains_optic”, “contains_memor” and so on. As a result the
classifier contains a variable number of features depending on the stems extracted from the training data. This
makes the feature set very targeted for the given domain. Common stopwords are removed2 and only words with
4 or more characters are considered. Table 2 shows an example of the input text and the produced signature for
an NC classifier with four features.

NC is trained using the names and categories of attributes. Essentially, NC is being taught that if a bullet con-
tains any words of the class itself, then it belongs to that class. Using the category name makes it possible to
identify bullets that need to mention the category in order to be meaningful. For example “3 cm sensor size” and
“3 cm display size” ought to mention the category so as not to be confused. One training instance is created from

Table 2. Example signatures for the NC.

Bullet
Produced signature, assuming the following feature set

{contains_optic, contains_zoom, containts_waterproof, contains_flash}

12× optical zoom {true, true, false, false}

Waterproof up to 10 m {false, false, true, false}

24.4 megapixel {false, false, false, false}

2Based on a list common stop words, as found at
https://github.com/arc12/Text-Mining-Weak-Signals/wiki/Standard-set-of-english-stopwords.

https://github.com/arc12/Text-Mining-Weak-Signals/wiki/Standard-set-of-english-stopwords

A. Lianos, Y. Yang

64

the name only and one from the combination of the name and category. Table 3 shows an example of the train-
ing instances created from the attributes “(sensor) size” and “(display) size”.

NC is implemented with a Naive Bayes classifier since there are only two different training instances for each
class. As a result there are no underlying patterns to be discovered. Bullets that do not contain any words from
the lexicon look exactly the same from the scope of the classifier, and are erroneously regarded similar (see last
example in Table 2 where the bullet is purely value based, and all features are set to false). On such occasions
the results of NC are completely negated and not used for the ensemble. It is recommended to identify similar
scenarios for every classifier, and negate the results when the classifier has no meaningful information to make a
decision.

3.2.2. The Value Classifier (VC)
The Value based classifier (VC) matches bullets that have similarities with the value rather than the name of an
attribute. It uses a variance of features and the core idea is to match letter and symbol patterns. The first set of
features consists of finding the presence for each of the following characters:

abcdefghijklmnopqrstuvwxyz<>,.?;:'&()/*-+="
This produces boolean features such as “contains_a”, “contains_b”, etc. The specific occurrence of capital

letters is excluded because they create false correlations. The SWC discussed later is instead responsible to cap-
ture these letters. Five more generic features are also used. These are the number of digits, the number of integ-
ers (as full non-decimal numbers, not as a one by one digit), the number of words (i.e. the number of whitespace
characters minus 1), the total number of upper-case letters, and the total length of the value.

Finally, because direct count of each digit separately creates more noise than discriminating power, number
ranges are used instead and the count shifts to how many times a number is found in any range. This process is
called discretization and is a form of dimensionality reduction [24]. Dougherty et al. [25] has found that the
performance of Naive Bayes is significantly improved when features are discretized regardless of the method. A
number of discretization techniques were tested, i.e. K-means clustering, equal width binning and equal fre-
quency binning, with the latest performing the best during pilot testing [26] [27].

Pilot testing for bin sizes between 40 and 80 has shown that the final accuracy fluctuates only around 7%, and
the final number chosen was 60. However, if the training data are not enough to adequately fill all 60 bins this
number is automatically reduced until all bins have at least 3 values. To create the bin ranges, the unique occur-
rence of numbers is being used. This is mandatory, as in the opposite scenario multiple bins might be filled with
only one number. Using bands of numbers allows capturing of numbers of similar magnitude even if those ap-
peared very rarely in the training data, or did not appear at all. To illustrate, VC is able to see the relation be-
tween “16 Megapixels” and “15.9 Megapixels” even if one of these values was never present in the training data
(assuming both these numbers end up in the same bin). We recommend similar techniques for continuous data
where identifying close number makes sense. However, discretization can create false positives if the main
source of numbers is not continuous numbers, such as telephone numbers or versions.

Pilot testing has shown that using a Multilayer Perceptron (MLP) is a significant improvement over a Deci-
sion Tree and a Naïve Bayes classifier3. This holds true even when the Kernel Based Distribution [28] is used in
Naive Bays to compensate for non-normal distributions of measurements, which tends to be the case with the
acquired data. The use of letters as features creates strong connections between them, practically allowing the

Table 3. Creation of training instances for the NC.

Training instance Class

size → (sensor) size

sensor size → (sensor) size

size → (display) size

display size → (display) size

Training instances for the attributes “(sensor) size” and “(display) size”.

3Based on pilot testing performed by the authors.

A. Lianos, Y. Yang

65

classifiers to detect words. This is a plausible explanation as to why the MLP performs better. VC is trained us-
ing all the values of all the attributes.

3.2.3. Units Classifier (UC)
The Units Classifier (UC) finds the units in which an attribute is measured. This is achieved by getting the next
word or symbol after a number, if any number is present, regardless of whether it is an actual unit or not. Scan-
ning all the values of all attributes a list with all the possible different units for the domain is populated. The
nominal feature “measured_in” is then constructed using the contents of that list as possible options (e.g. meas-
ured_in = [cm, hours, megapixel]). The possible options contain very little noise which is almost limited to
number delimiters such as dashes, slashes or commas. Without loss of generality, these common elements can
be removed to reduce the chance of false positives.

-*/?;,.()[]{}\|~
There is nothing to indicate that this parameter should change, even if the methodology transfers to com-

pletely different domains. A dictionary is used to combine different expressions of the same unit (e.g. double
quotes with inch and inches, centimetre with cm and so on). Because the list of units is populated by the training
data, it is very targeted to the given domain, and thus very effective.

Two more options are manually added to the list of units; one for the case where no units seem to be present,
and one for the case where units are present but UC is not aware of them. The later happens when a unit did not
exist in the training data, and in essence this option represents “all other units”. A second feature is finally used
detecting if an attribute is boolean or not. In case more than one units are present only the latest one is used. Ta-
ble 4 shows an example of the input text and the produced signature.

In case a bullet falls under any of the two special cases, and is not boolean, its results are negated during the
combination. This is because too many classes donot contain any units, and as far as UC can detect they all look
alike, while in truth their only similarity is that they contain no units. This is also the main reason UC needs to
be separated from VC, highlighting once again the power of having multiple separate classifiers.

The predicting power of UC lies in the fact that generally, no more than a couple of classes will use the same
units. However, once limited to these few classes there is no way of knowing which one is correct. That, along
with the negation of results for values with no units, nicely supplements the value classifier. As the decision is
based on two mutually exclusive features (it either contains a unit, or is boolean), a Naive Bayes classifier was
used. UC is trained with all the values of all attributes. As UC will adapt its features to the given training set, it
should be possible to transfer the whole classifier to completely different problems with virtually no changes.

3.2.4. Special Words Classifier (SWC)
The Special Words Classifier is used to detect the special words and acronyms often used in product descrip-
tions. In essence it discriminates between the normal and the possibly special use of letters and numbers. The
number of each of the following characters is used to create the feature set

[A-Z] [a-z] [0123456789.-]
For example, “numOf_A”, “numOf_B”, and so on.
To identify the special use of character in values, values are first split in white-spaces and the parts are treated

individually. Some simple rules are used to determine special versus regular use of each character. Initially all
bracket symbols are removed from the value. Then single character parts and parts that are a valid number (in-
teger or decimal) are discarded. Then special use of each character is assumed a priori, and negated in the fol-
lowing cases:

Table 4. Example signatures for the UC.

Bullet or training instance Produced signature, assuming the following feature set

 {[megapixels, x, cm, mm, inch, hot, no_units_found, unknown_unit], is_boolean}

12 Megapixels {megapixels, false}

Yes {no_units_found, true}

Waterproof up to 10 m {unknown_unit, false}

2 AA batteries last 360 shots {shot, false}

A. Lianos, Y. Yang

66

 Numbers or letters that represent a number with units (e.g. 9600 p)
 Numbers or letters in a “something-by-something” format, regardless of units in the end (e.g. 100 × 20, 1536

× 9600 p)
 Letters from fully lowercase words, or words that only start with a capital (e.g. optical, Optical)
 Symbols at the start or end of words (e.g. the dot at the end of “5× optical zoom.” has no special meaning)

Table 5 presents some example cases where special character meaning is assumed.
SWC is particularly effective in capturing versions, models, technology acronyms etc. The classifier could be

used as-is in any context that might contain similarly modeled special words. It also demonstrates how to utilize
characteristics of the text that are relevant to the given domain. For this classifier a Multilayer Perceptron was
preferred because the connection between features can actually identify whole words rather than individual let-
ters. SWC is trained with all the values of all attributes. Bullets that contain no special words would be falsely
related to attributes whose values tend not to contain any special words. To avoid false correlations, the results
of SWC are completely negated in the above scenario.

3.2.5. The Ensemble
To combine the results a fixed weighted scheme can be used. In essence, much like the negation of results, it is a
form of knowledge pre-built into the system. The weights are set empirically to specifically match consumer
electronics. Any of the discussed parameters can be adjusted to optimize results for completely different do-
mains. However, that would require manually labeling pilot data so that adjustments could be evaluated. The fi-
nal weights used are the following:

NC: 6.50, VC: 0.25, UC: 2.00, SWC: 1.25
It should be noted that different classifiers give results of different magnitudes, and thus the weights cannot be

used as an indicator of the importance of each classifier.

3.3. Pre-Filtering of Classes and Training Data
Since each discovered attribute translates to a class, the possible classes are defined directly by the raw data.
This might cause problems during classification as the original list of classes might contain a lot of noise. To
deal with this issue three filters have been developed that remove invalid classes and trim noisy data. The first
filter is looking for outliers in the values, removing values particularly long in comparison to the average value
length of that attribute. An interquartile range test is used to define many outliers in one pass [29]. The main
values filtered are ones that contain explanatory texts. For example the class “(features) built-in flash” has typi-
cal values of yes or no. If one value is “yes, guide number of 12 m @ 100ISO”, then it is removed from the
training data. As outliers are defined in contrast to the other values, removing them and repeating the procedure
might discover new outliers.

The second filter removes classes with less than 1% occurrence. This mainly removes classes that are most
commonly found under a different name. It also removes classes that are misspelled, or that are made ad-hoc for
a specific product. Some examples of such cases are “(general) size” that is misspelled, or “(sensor) flash” that
is incorrectly placed under the “sensor” category. This filter greatly reduces the number of possible outcome
classes making the classification task easier and increasing accuracy. At the same time however, accuracy will
go down since some texts will no longer have a correct class to be classified. The nature of the data or the prob-
lem should be examined to decide if this filter should be applied or not. Data with high number of rare classes,

Table 5. Example cases where special character meaning is assumed.

Bullet or training instance Parts where special meaning is assumed. The respective characters would be true in the bullet’s signature.

H.234 movie recording H.234

Triple XD engine XD

250 cd/m2 cd/m2

Conventional 4:3 4:3

2 ms gray-to-gray gray-to-gray

A. Lianos, Y. Yang

67

and low number of texts that should classify to these classes would benefit the most. Of course, if all classes
need to be maintained then this filter cannot be used. In this context the algorithm is looking for the most im-
portant attributes. By definition these should have a significant occurrence between product pages, greatly bene-
fiting for the use of this filter.

The final filter transforms or erases classes with an average value length over a given threshold. Initially the
filter attempts to identify if the value can be split into multiple smaller parts. If a pattern is found then the value
is split and each part is regarded as a separate value. For example, the class “(sensor) ISO modes” mainly con-
tains values that list all modes that a camera supports (e.g. ISO 100/ISO 200/ISO 400/ ISO 800/ISO 1600/ISO
3200). These are split into individual pieces and treated as separate values. If a pattern is not found the whole
class is disregarded. This filter is effective because by definition bullets are small texts, so such particularly long
values are never encountered. The evaluation data backs this up. On the Camera dataset more than 80% of the
retrieved bullets have a length of less than 20 characters, and a total average length of 17 (before any filtering).
The same filter is applied to the extracted bullets, and particularly long bullets are removed. The application of
this filter depends on the nature of the problem. If the problem is interested in identifying only a specific type of
classes, then the rest can be removed to improve accuracy. This is effectively what this filter does for our work,
since classes with long and textual values are not relevant.

4. Evaluation
To evaluate the presented methodology a demonstration system was developed in Java. The classifiers were im-
plemented using the well-known WEKA framework for machine learning and data mining [30]. Two different
datasets were used for evaluation, i.e. Cameras and TVs. Data were obtained using live commercial websites,
namely Argos (190 products), Curries (30), Jessops (116) and Tesco (407) for Cameras, and Curries (207), Pix-
mania (225) and Tesco (300) for TVs. All available products were retrieved from each web site4. To retrieve the
web pages a web crawler was developed. The category’s entry page is seeded to the crawler that then downloads
all product pages consecutively. A custom extractor is used for each site to identify the needed information.
Specifically, the extractor identifies the bullets, as well as the category headings and pairs of the attribute's name
and value. A lot of research has been done on generic extraction frameworks. Each framework emphasizes on
different aspects, but none is capable of identifying and labeling all the needed pieces of information for this
work. Ghani et al. [31] have developed a methodology that can extract pairs of attributes-values from web-pages.
Even though their work could be applied, for the creation needs of the evaluation datasets additional information
is needed (i.e. bullets and category headings). As a result manual extraction was preferred, in the sake of effi-
ciency. Table 6 presents some more information about the created datasets. An interesting observation is that
the exact same bullet is used 2.8 times for cameras, and 8.21 times for TVs.

In regards to the pre-filtering of data, two iterations were found more than adequate for outlier removal, with
the first iteration alone removing 96% of total values removed. A third iteration does not remove any additional
values. As the maximum length reduces, the filter that removes long values improves the accuracy. However,
the reduction in length increases the risk for erroneously discarded bullets. The maximum allowed length has
been set to 40 which permits 95% of bullets to go through5.

Since training and evaluation data are in a different format, overfitting is not directly possible. For the same
reason K-fold cross validation cannot be applied. Instead, a random X portion of the web-pages is used to pro-
vide the training data, and all the bullets are always used for evaluation. We run tests for X values of 5%, 10%,
20%, 30%, 40% and 50%. We repeat each test 30 times, and present the averages.

Table 6. Evaluation datasets.

Set Web-pages Attributes Total values Bullets Unique bullets

Cameras 743 297 18,799 930 327

TV 732 420 21,259 1659 202

Total values are the number of values all attributes have if put together. All information is before any filtering takes place.

4Webpages retrieved 2/2/2014.
5Presented numbers are averaged over both datasets.

A. Lianos, Y. Yang

68

Table 7 and Table 8 show the data gathered for each X, for Cameras and TVs respectively. Roughly 50% of
the total attributes (297) can be discovered from just 5% of the webpages, rising to 92% for 50% of the webpag-
es. TVs follow a similar trend with 60% for X = 5%, and 90% for X = 50% (420 maximum attributes). This is
easily explained as attributes repeat often between webpages, especially between webpages of the same source.
As they repeat, the most important ones can be discovered earlier, since they are mentioned in more webpages.
A detailed evaluation of the filtering mechanism is not part of the paper. However, it is interesting to note that as
X increases filtering is able to identify and discard not just more attributes, but a bigger portion of the attributes.
This supports the previous explanation that important attributes are discovered early. It further suggests that with
more attributes the mechanism adapts and the perception of what is important changes.

For the purposes of evaluation three lists were manually created.
 ListA notes the correct classes for each bullet. Bullets might have more than one correct class as they might

directly refer to more than one attributes. For example, the bullet “3 inch LCD screen” contains both
“(screen) size” and “(screen) type”.

 ListB groups classes that refer to the same attribute but have different names. For example “(screen) type”
and “(viewfinder) type”. The criteria for this annotation were that the values of the attribute must be in a
similar format. For example the classes “(flash) type” and “(other) flash” are not merged, as the typical val-
ues of the first are “built-in, pop-up, etc”, and the values of the second are “yes/no”.

 ListC holds a directed graph of classes that contain other classes. For example “(sensor) type and size” con-
tains the distinct classes of “(sensor) type” and “(sensor) size”. The criteria for this annotation were that the
parent class should offer at least all the information contained in any given child.

4.1. Classification Accuracy
To measure the accuracy of the classification ListA is expanded to include all similar classes from ListB. If the
classification result exists in this expanded ListA, it is counted as correct. To continue the previous examples, if
“3inch LCD screen” is classified to either “(screen) size”, “(screen) type” or “(viewfinder) type”, it is counted as
correct.

Table 7. Training data gathered for the camera dataset.

Percentage of
Webpages (X)

Attributes
before Filtering

Total Values
before Filtering

Attributes
after Filtering

Total Values
after Filtering

Attribute
Reduction

Values
Reduction

5% 149 967 130 954 13% 1%

10% 193 1845 157 1818 19% 1%

20% 222 3752 168 3674 24% 2%

30% 244 5596 176 5463 28% 2%

40% 260 7476 183 7302 30% 2%

50% 274 9620 182 9361 33% 3%

Table 8. Training data gathered for the TV dataset.

Percentage of
Webpages (X)

Attributes
before Filtering

Total Values
Before Filtering

Attributes
after Filtering

Total Values
after Filtering

Attribute
Reduction

Values
Reduction

5% 253 1082 241 1028 5% 5%

10% 293 2085 279 2016 5% 3%

20% 328 4389 312 4320 5% 2%

30% 354 6489 334 6439 6% 1%

40% 370 8718 350 8646 6% 1%

50% 379 10667 356 10505 6% 2%

A. Lianos, Y. Yang

69

Figure 2 summarizes the accuracy of the classifiers over 30 iterations, for different amounts of training data
(X), for both data sets. For example in Figure 2(b), the first column of SWC shows that when trained with 5%
of the available training data, SWC can predict the correct outcome 35% of the times. Subsequent columns show
that the results of SWC remain more or less stable, regardless of the amount of training data.

“Max Ensemble” represents the potentially correct classifications of the ensemble, if weights were readjusted
per iteration to achieve the maximum possible correct classifications. As expected, the chosen weights do not
give the best possible results in every iteration. However, by comparing “Ensemble” to “Max Ensemble” it can
be observed that results are consistently close. The gap between actual and potential accuracy reduces noticeably
with more training data. This demonstrates how a fixed weighted scheme is an appropriate approach to combine
the results of a highly diverse, not dynamically created ensemble.

It is immediately obvious from both charts that the ensemble has consistently better accuracy than any stan-
dalone classifier, for both data sets, for any amount of training data (X). Specifically, the improvement over the
best performing classifier ranges from 144% to 168% for Cameras, and from 195% to 214% for TVs6, depend-
ing on X. Please note that the Camera dataset has a baseline error rate of 16% due to noisy bullets with no re-
spective classes, capping the maximum possible correct classifications to 84%. The equivalent number for TVs
is only 2%7.

Another interesting observation for the Camera dataset is that even through 3 out of 4 classifiers degrade their
results as X increases, the ensemble improves. This is made possible by using weighted average rather than plu-
rality voting. As explained in the methodology, this gives to the ensemble the ability to consider all the results,
and not just the first picks of every classifier. Consequently, it can make a more informed decision. This is
demonstrated in the results by the higher accuracy of the ensemble in comparison to any of the individual clas-
sifiers.

Since there are no other existing methodologies to tackle this problem, there is no baseline for comparison
and results will need to be judged per se. To decide on whether the achieved accuracy is adequate, we further
perform the following tests.

4.2. Method Effectiveness
Apart from the classification accuracy, the effectiveness of the whole procedure is also evaluated in context. To
achieve this, we measure the existence of the top 7 attributes identified as important, in the list of the top 7 ac-
tually important attributes.

The list of actually important attributes occurs by measuring the repetition of each correct class from ListA.
Utilizing ListB similar classes are merged. Finally, because the bullets that refer to a child class will refer to the

(a) (b)

Figure 2. Correct predictions of each classifier for the camera dataset (a) and TV dataset (b), for different percentages of
training data (X). (a) Camera classifiers; (b) TV classifiers.

6Due to constraints in processing power, the MLPs of VC and SWC were replaced with Naive Bayesian classifiers, for the TV dataset only.
7149 bullets out of a total of 930 for cameras. 29 out of for 1659 TVs.

A. Lianos, Y. Yang

70

parent class as well, parent classes are removed if any of their children are found (to make room for more
classes). The list of identified attributes occurs by simply summing up the results of the classification, and thus
remains independent of any human interaction. Both lists are finally trimmed to 7 elements8. Each identified
attribute is checked for existence in the list of actual attributes. Attributes might exist either directly or by any of
their children. Existence is also assumed if classes are found under different names.

Table 9 and Table 10 contain the average results over 30 iterations for different amounts of training data (X).
With 5% of the training data used the ensemble correctly identifies 75% of the top attributes for cameras and
81% for TVs. This implies that overfitting is indeed not an issue, since accuracy is already at high with just 5%
of the data used. Increasing X offers a double benefit, as it improves both accuracy and stability. The rate of im-
provement is in line with the total correct classifications previously discussed. From a different perspective the
top 7 most important attributes are always included in the top 11 identified, for both sets, for every iteration. To
demonstrate the impact this has on practical applications, a developer (or better yet, a crowdsourcing system)
looking to identify the 7 most important attributes, can now only examine 11, rather than 297 or 420 that were
originally found in each set.

5. Discussion and Future Work
This work has shown that using highly diverse classifiers creates synergy, and dramatically improves results. It
has also demonstrated that separated classifiers have multiple advantages. Each classifier can be implemented by
the most appropriate model, which results in reduced training times and improved accuracy. In addition it allows
training from different parts of the dataset, or from completely different and diverse datasets. This can be partic-
ularly useful in cases where training data are not readily available, as it allows training from data that are in a
different format. The negation of results for certain classifiers is also an important technique, effectively using
the classifier only when its results are relevant. Finally, filtering the training data is an essential step, as it re-
duces noise with minimal impact on the total training values.

The evaluation has shown that using a custom ensemble of classifiers is a feasible solution to the problem.
Each classifier can target a specific subset of characteristics that the text might exhibit. This is effectively what

Table 9. Attributes identified as important that are actually important (camera dataset).

Percentage of training data (X) Found in top 7 Relative standard deviation

5% 5.27 (75%) 16%

10% 5.43 (78%) 13%

20% 5.63 (80%) 10%

30% 5.63 (80%) 9%

40% 5.83 (83%) 6%

50% 5.76 (82%) 8%

Table 10. Attributes identified as important that are actually important (TV dataset).

Percentage of training data (X) Found in top 7 Relative standard deviation

5% 5.70 (81%) 14%

10% 5.70 (81%) 10%

20% 5.63 (80%) 14%

30% 5.83 (83%) 10%

40% 5.73 (82%) 8%

50% 5.83 (83%) 6%

8Seven was chosen as a representative number based on the study of Miller [32], which identifies it as the maximum number before infor-
mation overloading beings to appear.

A. Lianos, Y. Yang

71

allows the use of different training sources, since each classifier needs training only in a specific subset of cha-
racteristics, even if those characteristics will not be present in every text. The ensemble can correctly identify
more bullets than each classifier would individually. This is mainly due to the negation of results, since the en-
semble can decide without being affected by the opinions of the classifiers that do not have enough data to make
a decision. The evaluation of the suggested method in context provides a better understanding of its power. Re-
sults show how this approach can be used to minimize the need for human interaction while maintaining zero
error rates. Reducing the potential options by over 96% while still maintaining all the correct results, even in a
worst case scenario, shows that this approach has a lot to offer.

In addition, the feature set of each classifier has successfully captured its respective aspect, providing some
insight on what can be used as an effective feature set for product classification. Combining heuristic methods
with existing classification techniques can utilize hidden characteristics of the available data. The algorithm of-
fers the opportunity for tuning in various stages, providing valuable flexibility. Essentially, a targeted version of
the system could be developed per product category or domain.

It is important to realize that even though the needs of this work were different, the developed classifiers are
able to classify arbitrary texts to explicit classes. This allows the methodology to be used for other problems,
such as consolidating multiple fields of a database or multiple databases to one. The presented methodology re-
quires human involvement limited to the tuning of parameters before executing it. Default parameters for con-
sumer electronics are presented in this paper. The outcome of the ensemble can be further improved if access to
human intelligence is assumed. For example, in the case of this work the top 11 attributes can be presented to an
expert so the top 7 can be selected. This is a significant improvement over presenting every attribute of the cat-
egory. In the case of merging database fields, it would allow the suggestion of fields that might need to be
merged.

Since there are misclassified values there is room for improvement. Potentially, this can be achieved with
better weight tuning and more heuristic procedures during the combination. Methodologies that use the confi-
dence of the classifier as a starting point for the weight might be applicable. The presented methodology only
identifies one attribute from each bullet. It would seem beneficial to define this mapping as one to many, to best
capture the information conveyed by the bullet. The whole algorithm can be further improved with even more
targeted feature sets, since the potential for hidden characteristics in values is endless. As demonstrated, clas-
sifiers can be tailored to specific problems. In the presented methodology SWC captures characters with special
meaning. Consumer electronics often contain a lot of acronyms, but in their absence the effectiveness of SWC
would diminish. This however points to the idea that different problems might have different characteristics that
can be exploited. The approach taken allows adding or removing classifiers with virtually no changes to other
parts, creating yet another adjustment point.

It is in the immediate plans of this work to make practical use of the above methodology in a product recom-
mender system. The automatic knowledge acquired will be filtered through a crowdsourcing system to further
improve results. With the achieved level of accuracy this can happen with minimal involvement from the crowd.
The final results will be then used for automatic product scoring, using only those attributes that have been iden-
tified as important.

6. Conclusion
This paper examines if an ensemble of bespoke and diverse classifiers can utilize training data that are not usa-
ble by traditional classification techniques. This has been achieved by developing multiple classifiers with
unique feature sets. Each feature set targets different characteristics of the available training data, which carry
enough information to provide classification of high accuracy, when combined in an ensemble. This segmenta-
tion allows each classifier to train on completely different data sources, since only a portion of the features needs
to be available. The experimental results show that the developed approach is viable, and that the segmentation
of classifiers can greatly improve accuracy. Application of the presented methodology will be required to define
the relation between classifiers.

Acknowledgements
This work is supported by academic research funding from the University of Portsmouth.

A. Lianos, Y. Yang

72

References
[1] Breiman, L. (1996) Bagging Predictors. Machine Learning, 24, 123-140. http://dx.doi.org/10.1007/BF00058655
[2] Schapire, R.E. (1990) The Strength of Weak Learnability. Machine Learning, 5, 197-227.

http://dx.doi.org/10.1007/BF00116037
[3] Manning, C.D., Raghavan, P. and Schütze, H. (2008) Introduction to Information Retrieval, Vol. 1. Cambridge Uni-

versity Press, Cambridge. http://dx.doi.org/10.1017/CBO9780511809071
[4] Sebastiani, F. (2002) Machine Learning in Automated Text Categorization. ACM Computing Surveys, 34, 1-47.

http://dx.doi.org/10.1145/505282.505283
[5] Forman, G. (2003) An Extensive Empirical Study of Feature Selection Metrics for Text Classification. Journal of Ma-

chine Learning Research, 3, 1289-1305.
[6] Dasu, T., Johnson, T., Muthukrishnan, S. and Shkapenyuk, V. (2002) Mining Database Structure; or, How to Build a

Data Quality Browser. Proceedings of the 2002 ACM SIGMOD International Conference on Management of Data,
Madison, 3-6 June 2002, 240-251. http://dx.doi.org/10.1145/564691.564719

[7] Naumann, F., Ho, C.T., Tian, X., Haas, L. and Megiddo, N. (2002) Attribute Classification Using Feature Analysis.
Proceedings of the International Conference on Data Engineering, San Jose, 2002, 271-271.
http://dx.doi.org/10.1109/icde.2002.994725

[8] Maclin, R. and Opitz, D. (2011) Popular Ensemble Methods: An Empirical Study. ArXiv11060257
[9] Freund, Y., Schapire, R.E., et al. (1996) Experiments with a New Boosting Algorithm. International Conference on

Machine Learning, 96, 148-156.
[10] Hansen, L.K. and Salamon, P. (1990) Neural Network Ensembles. IEEE Transactions on Pattern Analysis and Ma-

chine Intelligence, 12, 993-1001. http://dx.doi.org/10.1109/34.58871
[11] Dietterich, T.G. (2000) Ensemble Methods in Machine Learning. In: Multiple Classifier Systems, Springer, Berlin, 1-

15. http://dx.doi.org/10.1007/3-540-45014-9_1
[12] Opitz, D.W. and Shavlik, J.W. (1996) Actively Searching for an Effective Neural Network Ensemble. Connection

Science, 8, 337-354. http://dx.doi.org/10.1080/095400996116802
[13] Perrone, M.P. and Cooper, L.N. (1992) When Networks Disagree: Ensemble Methods for Hybrid Neural Networks.

DTIC Document.
[14] Rogova, G. (1994) Combining the Results of Several Neural Network Classifiers. Neural Networks, 7, 777-781.

http://dx.doi.org/10.1016/0893-6080(94)90099-X
[15] Maclin, R. and Shavlik, J.W. (1995) Combining the Predictions of Multiple Classifiers: Using Competitive Learning to

Initialize Neural Networks. Proceedings of the 14th International Joint Conference on Artificial Intelligence, Montreal.
[16] McCallum, A. and Nigam, K. (1998) A Comparison of Event Models for Naive Bayes Text Classification. Proceed-

ings of the AAAI-98 Workshop on Learning for Text Categorization, Madison, 1998, 41-48.
[17] Friedman, N., Geiger, D. and Goldszmidt, M. (1997) Bayesian Network Classifiers. Machine Learning, 29, 131-163.

http://dx.doi.org/10.1023/A:1007465528199
[18] Zhang, G.P. (2000) Neural Networks for Classification: A Survey. IEEE Transactions on Systems, Man, and Cyberne-

tics, Part C: Applications and Reviews, 30, 451-462.
[19] Ruck, D.W., Rogers, S.K. and Kabrisky, M. (1990) Feature Selection Using a Multilayer Perceptron. Neural Network

Comput, 2, 40-48.
[20] Quinlan, J.R. (1986) Induction of Decision Trees. Machine Learning, 1, 81-106.

http://dx.doi.org/10.1007/BF00116251
[21] Rokach, L. and Maimon, O.Z. (2008) Data Mining with Decision Trees: Theory and Applications. World Scientific

Publishing Co., Inc., Singapore.
[22] Kotsiantis, S., Zaharakis, I. and Pintelas, P. (2007) Supervised Machine Learning: A Review of Classification Tech-

niques. Frontiers in Artificial Intelligence and Applications, 160, 3.
[23] Xhemali, D., Hinde, C.J. and Stone, R.G. (2009) Naïve Bayes vs. Decision Trees vs. Neural Networks in the Classifi-

cation of Training Web Pages. International Journal of Computer Science Issues, 4, 16-23.
[24] Liu, H. and Motoda, H. (1998) Feature Selection for Knowledge Discovery and Data Mining. Springer, Berlin.

http://dx.doi.org/10.1007/978-1-4615-5689-3
[25] Dougherty, J., Kohavi, R. and Sahami, M. (1995) Supervised and Unsupervised Discretization of Continuous Features.

Proceedings of the 12th International Conference on Machine Learning, Tahoe City, 9-12 July 1995, 194-202.
[26] Catlett, J. (1991) On Changing Continuous Attributes into Ordered Discrete Attributes. Machine Learning—EWSL-91

http://dx.doi.org/10.1007/BF00058655
http://dx.doi.org/10.1007/BF00116037
http://dx.doi.org/10.1017/CBO9780511809071
http://dx.doi.org/10.1145/505282.505283
http://dx.doi.org/10.1145/564691.564719
http://dx.doi.org/10.1109/icde.2002.994725
http://dx.doi.org/10.1109/34.58871
http://dx.doi.org/10.1007/3-540-45014-9_1
http://dx.doi.org/10.1080/095400996116802
http://dx.doi.org/10.1016/0893-6080(94)90099-X
http://dx.doi.org/10.1023/A:1007465528199
http://dx.doi.org/10.1007/BF00116251
http://dx.doi.org/10.1007/978-1-4615-5689-3

A. Lianos, Y. Yang

73

Lecture Notes in Computer Science, 482, 164-178.
[27] Kerber, R. (1992) Chimerge: Discretization of Numeric Attributes. Proceedings of the 10th National Conference on

Artificial Intelligence, San Jose, 12-16 July 1992, 123-128.
[28] John, G.H. and Langley, P. (1995) Estimating Continuous Distributions in Bayesian Classifiers. Proceedings of the

11th Conference on Uncertainty in Artificial Intelligence, Montreal, 18-20 August 1995, 338-345.
[29] Natrella, M. (2010) NIST/SEMATECH e-Handbook of Statistical Methods.
[30] Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P. and Witten, I.H. (2009) The WEKA Data Mining Soft-

ware: An Update. ACM SIGKDD Explorations Newsletter, 11, 10-18.
http://dx.doi.org/10.1145/1656274.1656278

[31] Ghani, R., Probst, K., Liu, Y., Krema, M. and Fano, A. (2006) Text Mining for Product Attribute Extraction. ACM
SIGKDD Explorations Newsletter, 8, 41-48. http://dx.doi.org/10.1145/1147234.1147241

[32] Miller, G.A. (1956) The Magical Number Seven, Plus or Minus Two: Some Limits on Our Capacity for Processing In-
formation. Psychological Review, 63, 81-97. http://dx.doi.org/10.1037/h0043158

http://dx.doi.org/10.1145/1656274.1656278
http://dx.doi.org/10.1145/1147234.1147241
http://dx.doi.org/10.1037/h0043158

	Classifying Unstructured Text Using Structured Training Instances and an Ensemble of Classifiers
	Abstract
	Keywords
	1. Introduction
	2. Related Work
	3. Methodology
	3.1. Introduction
	3.2. The Classifiers
	3.2.1. The Name Classifier (NC)
	3.2.2. The Value Classifier (VC)
	3.2.3. Units Classifier (UC)
	3.2.4. Special Words Classifier (SWC)
	3.2.5. The Ensemble

	3.3. Pre-Filtering of Classes and Training Data

	4. Evaluation
	4.1. Classification Accuracy
	4.2. Method Effectiveness

	5. Discussion and Future Work
	6. Conclusion
	Acknowledgements
	References

