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Abstract 
 

The aim of every design choice is to minimize the prediction error, especially at every location of the 
design space, thus, it is important to measure the error at all locations in the design space ranging from 
the design center (origin) to the perimeter (distance from the origin). The measure of the errors varies 
from one design type to another and considerably the distance from the design center. Since this measure 
is affected by design sizes, it is ideal to scale the variance for the purpose of model comparison. 
Therefore, we have employed the Scaled Prediction Variance and D – optimality criterion to check the 
behavior of equiradial designs and compare them under varying axial distances, design sizes and center 
points. The following similarities were observed: (i) increasing the design radius (axial distance) of an 
equiradial design changes the maximum determinant of the information matrix by five percent of the new 

axial distance (5% of 1.414 = 0.07) see Table 3. (ii) increasing the cn center runs  pushes the maximum 

 xSPV   to the furthest distance from the design center (0  0) (iii) changing the design radius changes the 

location in the design region with maximum  xSPV   by a multiple of the change and (iv) changing the 

design radius also does not change the maximum  xSPV   at different radial points and center runs . 
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Based on the findings of this research, we therefore recommend consideration of equiradial designs with 
only two center runs in order to maximize the determinant of the information matrix and minimize the 
scaled prediction variances. 
 

 

Keywords: Axial distance; center point; equiradial design; error; scaled prediction variance. 
 

1 Introduction 
 
In design of experiment, several factors affect the performance of a chosen design type, especially when the 
goal of any design is to estimate the model parameters without bias and with minimum variance. These 
factors may include model type, design region, positioning of the design points and missing design points. 
Given that we are interested in minimizing the variance of the regression coefficients, that is 

  kiVar i ,...,2,1,0,ˆ  , for k regressors, then the key factor in choosing the design is the concept of 

orthogonality. Consider a first-order design model with design matrix as X , and a fixed sample size N , 

the elements on the diagonals of   1XX   are minimized by making the off-diagonals of XX   zero and 

forcing the diagonals of XX   to be as large as possible. This is achieved by using variance-optimal first 

order designs such as the 
k2 factorial designs and 

pk2  factorial fractions of resolution III and above.  The 

design matrix X  is a function of the location in the design variables at which one predicts and also a 
function of the model as well as the design.  
 

The prediction variance   xyVar


ˆ , read as “the variance of the predicted y value at design location x


 ” 

varies from location to location in the design space and gives a reflection of how well one predicts with the 
given model. The scaled prediction variance is especially important where models are used for process 
optimization, such as in response surface methodology, Myers et al. [1]. It used when comparing designs and 
as such it is often convenient to scale the prediction variance, that is, to work with the scaled prediction 

variance. By scaling, the design size N is used to multiply the prediction variance and the result divided by 

the mean square error 
2  of the supposed design. The multiplication by N  allows the quantity to reflect 

variance on a per observation basis and division by 
2 makes the quantity scale-free. The scaled prediction 

variance gives a measure of the error at all locations in the design space ranging from the design center to 
the perimeter and varies from one design type to another.  
 

Equiradial design are special type of two-factor designs that consists of two or more sets of design points 
where the points for each set have the same distance from the design origin, Khuri and Cornel [2]. They are 
usually defined on a common sphere for modeling second-order response function. An equiradial design for 

a two variable has a set of five points defined on a circle of radius (axial distance) 1  from the design 

center. The center point (or points) forms a second set in a circle of radius zero, Khuri and Cornel [2]. The 
rotable central composite design is a member of the larger class of equiradial designs, Box and Wilson [3]. 

For example, with 2k and 2 , the 
22  full factorial points and the four axial (star) points form a 

set of eight points on the circle of radius 2  and the center point (or points) forms a second set on a 

circle of radius zero. Hence, the inscribed central composite design and the rotable central composite design 
automatically belong to the larger class of equiradial designs.  
 

In this paper, the aim is to determine the Scaled Prediction Variances of equiradial design defined on design 
regions under changing design sizes, axial distances and center runs. The following research objectives are 
considered: 
 

(i) To examine the behaviour of the Scaled Prediction Variances of spherical equiradial designs for 
changing design sizes.  
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(ii) To examine the behaviour of the Scaled Prediction Variances of spherical equiradial designs for 
changing center points  

(iii)  To compare the behavior of the designs with axial distances 21   and  of spherical 

equiradial designs on similar design regions. 
 

A simple layout comprising the radial points  1n , the center points  cn , the design size (N), the 

determinant of information matrix (det (M)), the Scaled Prediction Variances for all the design points in the 
design region, the maximum scaled prediction variance (SPVmax) with the corresponding location in the 
design region and rank of the determinant of the M (information matrix). Each layout component has been 
well explained in Myers et al. [1], which serves as a major reference in Response Surface Methodology. 
 
This paper is divided into six sections. Section one above gives the general introduction of the work. Section 
two is devoted to literature review. Section three takes care of materials and methods. Section four is results 
and discussion. Section five treats six treats conclusion and recommendations of the work. Following 
Section five are references.  
 

2 Literature Review 
 
Atkinson and Donev [4] investigated several design regions in optimal design theory and include spherical, 
cuboidal, simplex and also irregular regions. The composition of the several design points and their 
corresponding model type is generally a factor of some axial distances which specifies the nature of the 
design geometry. Three commonly encountered axial distances have been explored in Iwundu [5]. It is 
important to make a design as robust as possible in order to exploit the interaction between control and 
uncontrollable noise variables and find the settings of the control factors that minimize response variation 
from uncontrolled factors. In experimental design, there are known sources of variability that may be 
controlled by the experimenter (control variables), there are still some more influential factors that may not 
be controlled by the experimenter (uncontrollable noise variables). These uncontrollable noise variables are 
classed as error components. The three basic principles of experimentation namely randomization, 
replication and local control (blocking) are complementary to each other in increasing the design efficiency 
by minimizing the effect of these error components, Preece [6]. Therefore the principles of experimentation 
are highly recommended during the construction and implementation of equiradial designs. Bartholomew 
[7], studied the effects of different types of fertilizers and soil types on the yield of tiger nuts and the 
marginal effects of the error components were revealed in the two way multiple analysis of variance. Iwundu 
[8] considered the behavior of alternative second-order N-point equiradial designs under variations of model 

parameters for design radius 1  and established relationships among some alphabetic optimality criteria 

with regards to the designs and the models. It is important to note that equiradial designs for 

18,7,6,5,21 1  cnwhennand   has been studied by Iwundu and Onu [9] and the 

results compared with central component design using some alphabetical based criteria. However, we need 
to have results for higher radial points (from 8 and above) and ascertain the behavior of the equiradial design 
at these radial point for changing design sizes and center runs. On this gap, we therefore commenced this 
research work. 
 

3 Materials and Methods 
 
Let equation (1) be the predicted response for the dependent variable y 
 

̂ˆ Xy                      (1) 

Let the point 0x


be defined as  
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The estimated mean response at 0x


is 

 

  ̂ˆ
00 xxy 


                    (3) 

 
 
This estimator in equation (3) is unbiased and the corresponding variance is called the predictive variance or 

the variance of at  0x


 defined as 
 

     0

1

0
2

0ˆ xXXxxyVar
  

                 (4) 
 
But when comparing designs, it is often convenient to scale the  variance, that is, to work with the scaled 
predictive variance as given by 
 

 
    

  xMx
xXXxNxyVarN

SPV x
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2
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ˆ 
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



                (5) 
 

The division by 
2

make the quantity scale free and multiplication by N allows the quantity to reflect 
variances on a per observation basis and removes the effect of varying design sample sizes. 
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Consider the design 9D
 
for  21   and  and its design matrix, X , constructed using same 

procedures as for the 6-point equiradial design expressed in Khuri and Cornel [2], Myers et al. [1] and 

Iwundu [5]. The 9-point equiradial design with 1  and 1cn  center point is 
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The design measures associated with the equiradial designs are such that the design matrices are expressed 
as 
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where  
 

ax  
and bx  are two controllable variables,  

  is the radius(axial distance) of the design,  

1n  is the number of points on the sphere  

 cn  represents c center points in the design region.  

 

This study focuses on the following designs 111,10,9,8,21 1  cnwhennand    , 

the value of θ is assumed equal to zero since θ has no effect on the information matrix, XX  , of the design, 

Myers et al. [1]. Again, recall 


180
)( rRadian , therefore 

2
2

180
,1,180   rwhenandrwhen .  

 

For the design matrix, X, the associated information matrix, XX  , is assumed nonsingular and normalized as 

N

XX
M


 , where N  is the design size and M  is symmetric. The inverse of the moment matrix 

1M  is 

unique and gives the matrix of estimates of variances and covariances of model coefficients. The inverse 
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matrix is cardinal for design comparison purposes as most optimality criteria, as in Rady et al. [10], are 

defined as functional of
1M . The determinant of information matrix as well as the Scaled Prediction 

Variances associated with each design location for the two design radii (axial distances) shall be computed. 
The determinant of the information matrix will be compared using the D – optimality criterion. The D – 
optimality criterion is one of the popular alphabetic optimality criteria that is used to determine an ideal 
design that would minimize the generalized variance of the parameter estimates and also minimize variance 
of predicted model over the design region. The D stands for determinant which means D-optimality is one in 

which the determinant of the moment matrix 
N

XX
M


 is maximized over all the designs and 

equivalently minimizes the determinant of the variance-covariance matrix. According to John and Draper 
[11], D-optimality criterion is given by 
 

         1detdet  MMinMMaxM                  (6) 
 
Where  
 
det (.)  is determinant of matrix. 

 M   is  moment matrix of design   

1M   is the inverse of the moment matrix 
 

The 10-point equiradial design for 0.1 , 91 n  and 1cn  contains the design points ( ba xx  ) as 

(1,      0), (0.77,   0.64), (0.17,     0.98), (-0.50, 0.87), (-0.94,  0.34), (-0.94,  -0.34), (-0.50, -0.87), (0.17, -

0.98), (0.77,  -0.64), (0,   0). The 11-point equiradial design for 0.1 , 
 101 n  and 1cn  contains the 

design points (1,      0), (0.81,     0.59), (0.31,   0.95), (-0.31,     0.95), (-0.81, 0.59), (-1,  0), (-0.81, -0.59), (-

0.31, -0.95), (0.31,  -0.95), (0.81,  -0.59), (0,    0). The 12-point equiradial design for 0.1  , 111 n  

and 1cn contains the design points (1,     0), (0.84,    0.54), (0.41,     0.91), (-0.14,   0.99), (-0.65,    0.76), 

(-0.96,   0.28), (-0.96,    -0.28), (-0.65,    -0.76), (-0.14,  -0.99), (0.41,  -0.91), (0.84,   -0.54), (0,     0), Myers 

et al. [1]. The corresponding equiradial design for 2  are obtained by multiplying the various 

ba xandx  locations in the design points in 1  by 2  or following the standard method of 

constructing equiradial designs.  
 

4 Results and Discussion 
 
The computations were done manually with the use of Microsoft Excel Matrix computations for equation 5. 

We are studying equiradial design with radial points 11,10,9,81 n
 
because the scaled prediction 

variances for equiradial design with radial points 8,7,6,51 n   has been done by Iwundu and Onu [9]. 

We included the 8 radial point in our research in order to compare our results with their findings before 
extending to 9, 10 and 11 radial points. 
 

4.1 Spherical equiradial designs   51,0.1  cn  
 

The computations for equiradial design involving 11,10,9,81 n , 5,4,3,2,10.1  cnand  

are as in Table 1.  
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Table 1. Summary of computations for spherical Equiradial designs  5,4,3,2,1,1  cn
 

 

1  Scaled Predictive Variance 

Design Size N 9 10 11 12 13 

Radial Point  1n       8 

Center Point  cn  1 2 3 4 5 

Det  M  0.00024 0.00026 0.00022 0.00017 0.00013 

(1                 0) 5.61 6.23 6.85 7.47 8.10 
(0.71       0.71) 5.66 6.29 6.92 7.55 8.17 
(0                 1) 5.61 6.23 6.85 7.47 8.10 
(-0.71     0.71) 5.65 6.28 6.91 7.53 8.16 
(-1                0) 5.64 6.27 6.89 7.52 8.15 
(-0.71     -0.71) 5.55 6.16 6.78 7.40 8.01 
(0                -1) 5.64 6.27 6.89 7.52 8.15 
(0.71     -0.71) 5.65 6.28 6.91 7.53 8.16 
(0                 0) 9.00 5.00 3.67 3.00 2.60 
Max SPV point (0          0) (0.71     0.71) (0.71    0.71) (0.71    0.71) (0.71    0.71) 
Max SPV 9.00 6.29 6.92 7.55 8.17 

Rank of Det  M  2 1 3 4 5 

  Scaled Predictive Variance 
Design Size N 10 11 12 13 14 

Radial Point  1n  9 

Center Point  cn  1 2 3 4 5 

Det  M  0.000230 0.000259 0.000231 0.000190 0.000153 

(1                 0) 5.51 6.06 6.61 7.16 7.71 
(0.77       0.64) 5.60 6.16 6.72 7.28 7.71 
(0.17       0.98) 5.50 6.06 6.61 7.16 7.71 
(-0.5       0.87) 5.60 6.16 6.72 7.28 7.84 
(-0.94     0.34) 5.54 6.10 6.65 7.21 7.76 
(-0.94   -0.34) 5.54 6.10 6.65 7.21 7.76 
(-0.5    -0.87) 5.60 6.16 6.72 7.28 7.84 
(0.17    -0.98) 5.50 6.06 6.61 7.16 7.71 
(0.77    -0.64) 5.60 6.16 6.72 7.28 7.84 
(0               0) 10.00 5.50 4.00 3.25 2.80 
Max SPV (0               0) (-0.5       0.87) (-0.5       0.87) (-0.5       0.87) (-0.5       0.87) 
Max 10.0 6.2 6.7 7.3 7.8 

Rank of Det  M  3 1 2 4 5 

  Scaled Prediction Variance 
Design Size N 11 12 13 14 15 

Radial Point   1n  10     

Center Point  cn  1 2 3 4 5 

Det  M  0.00022 0.00026 0.00024 0.00021 0.00017 

(1               0) 5.50 5.99 6.49 6.99 7.49 
(0.81     0.59) 5.51 6.01 6.52 7.02 7.52 
(0.31     0.95) 5.49 5.99 6.49 6.99 7.48 
(-0.31   0.95) 5.49 5.99 6.49 6.99 7.48 
(-0.81   0.59) 5.51 6.01 6.52 7.02 7.52 
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1  Scaled Predictive Variance 

(-1             0) 5.50 5.99 6.49 6.99 7.49 
(-0.81  -0.59) 5.51 6.01 6.52 7.02 7.52 
(-0.31  -0.95)  5.49 5.99 6.49 6.99 7.48 
(0.31    -0.95) 5.49 5.99 6.49 6.99 7.48 
(0.81   -0.59) 5.51 6.01 6.52 7.02 7.52 
(0               0) 11.00 6.00 4.33 3.50 3.00 
Max SPV (0           0) (0.81   0.59) (0.81   0.59) (0.81   0.59) (0.81   0.59) 
Max 11.0 6.0 6.5 7.0 7.5 
Rank of Det (M) 3 1 2 4 5 
  Scale  Variance 
Design Size N 12 13 14 15 16 

Radial Point   1n  11         

Center Point  cn  1 2 3 4 5 

Det  M  0.0002085 0.0002580 0.0002481 0.0002187 0.0001856 

(1                 0) 5.47 5.92 6.38 6.83 7.29 
(0.84      0.54) 5.47 5.92 6.38 6.83 7.29 
(0.41      0.91) 5.43 5.88 6.34 6.79 7.24 
(-0.14     0.99) 5.42 5.88 6.33 6.78 7.23 
(-0.65    0.76) 5.47 5.92 6.38 6.84 7.29 
(-0.96     0.28) 5.47 5.93 6.39 6.84 7.30 
(-0.96    -0.28) 5.47 5.93 6.39 6.84 7.30 
(-0.65    -0.76)  5.47 5.92 6.38 6.84 7.29 
(-0.14     -0.99) 5.42 5.88 6.33 6.78 7.23 
(0.41      -0.91) 5.43 5.88 6.34 6.79 7.24 
(0.84      -0.54) 5.47 5.92 6.38 6.83 7.29 
(0                 0) 12.00 6.50 4.67 3.75 3.20 
Max SPV (0         0) (0          0) (-0.96   0.28) (-0.96  0.28) (-0.96     0.28) 
Max 12.00 6.50 6.39 6.84 7.30 

Rank of Det  M  4 1 2 3 5 

 

4.2 Spherical equiradial designs   51,2  cn  
 

The computations involving equiradial designs constructed using 11,10,9,81 n ,

5,4,3,2,12  cnand  are as in Table 2. 

 

Table 2. Summary of computations for spherical Equiradial designs  5,4,3,2,1,2  cn
 

 

2  
Scale Variance 

Design Size N 9 10 11 12 13 

Radial Point  1n  8 

Center Point  cn  1 2 3 4 5 

Det  M  0.06 0.07 0.06 0.04 0.03 

(1.414            0) 5.61 6.23 6.85 7.47 8.10 
(1.00         1.00) 5.66 6.29 6.92 7.55 8.17 
(0.00      1.414) 5.61 6.23 6.85 7.47 8.10 
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2  
Scale Variance 

(-1.00      1.00) 5.65 6.28 6.91 7.53 8.16 
(-1.414         0) 5.64 6.27 6.89 7.52 8.15 
(-0.99     -0.99) 5.55 6.16 6.78 7.40 8.01 
(0.00    -1.414) 5.64 6.27 6.89 7.52 8.15 
(1.00      -1.00) 5.65 6.28 6.91 7.53 8.16 
(0                 0) 9.00 5.00 3.67 3.00 2.60 
Max SPV (0          0) (1.00   1.00) (1.00    1.00) (1.00   1.00) (1.00   1.00) 
Max 9.00 6.29 6.92 7.55 8.17 

Rank of Det  M  2 1 3 4 5 

  Scaled Predictive Variance 
Design Size N 10 11 12 13 14 

Radial Point  1n  9 

Center Point  cn  1 2 3 4 5 

Det  M  0.06 0.07 0.06 0.05 0.04 

(1.414          0) 5.51 6.06 6.61 7.16 7.71 
(1.09       0.90) 5.60 6.16 6.72 7.28 7.71 
(0.24       1.39) 5.50 6.06 6.61 7.16 7.71 
(-0.71      1.23) 5.60 6.16 6.72 7.28 7.84 
(-1.33      0.48) 5.54 6.10 6.65 7.21 7.76 
(-1.33     -0.48) 5.54 6.10 6.65 7.21 7.76 
(-0.71     -1.23) 5.60 6.16 6.72 7.28 7.84 
(0.24      -1.39) 5.50 6.06 6.61 7.16 7.71 
(1.09      -0.90) 5.60 6.16 6.72 7.28 7.84 
(0               0) 10.00 5.50 4.00 3.25 2.80 
Max SPV (0       0) (-0.71 1.23) (-0.71   1.23) (-0.71   1.23) (-0.71   1.23) 
Max 10.0 6.2 6.7 7.3 7.8 

Rank of Det  M  3 1 2 4 5 

  Scaled Predictive Variance 
Design Size N 11 12 13 14 15 

Radial Point  1n  10 

Center Point  cn  1 2 3 4 5 

Det  M  0.057 0.067 0.063 0.053 0.044 

(1.414           0) 5.50 5.99 6.49 6.99 7.49 
(1.15        0.83) 5.51 6.01 6.52 7.02 7.52 
(0.44        1.34) 5.49 5.99 6.49 6.99 7.48 
(-0.44       1.34) 5.49 5.99 6.49 6.99 7.48 
(-1.15       0.83) 5.51 6.01 6.52 7.02 7.52 
(-1.414     0.00) 5.50 5.99 6.49 6.99 7.49 
(-1.15      -0.83) 5.51 6.01 6.52 7.02 7.52 
(-0.44      -1.34)  5.49 5.99 6.49 6.99 7.48 
(0.44       -1.34) 5.49 5.99 6.49 6.99 7.48 
(1.15       -0.83) 5.51 6.01 6.52 7.02 7.52 
(0                         0) 11.00 6.00 4.33 3.50 3.00 
Max SPV (0         0) (1.15   0.83) (1.15    0.83) (1.15   0.83) (1.15   0.83) 
Max 11.00 6.01 6.52 7.02 7.52 

Rank of Det  M  3 1 2 4 5 

  Scaled Predictive Variance 
Design Size N 12 13 14 15 16 
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2  
Scale Variance 

Radial Point  1n  11 

Center Point  cn  1 2 3 4 5 

Det  M  0.05 0.07 0.06 0.06 0.05 

(1.414         0) 5.47 5.92 6.38 6.83 7.29 
(1.19       0.76) 5.47 5.92 6.38 6.83 7.29 
(0.58       1.29) 5.43 5.88 6.34 6.79 7.24 
(-0.20      1.40) 5.42 5.88 6.33 6.78 7.23 
(-0.92     1.07) 5.47 5.92 6.38 6.84 7.29 
(-1.36     0.40) 5.47 5.93 6.39 6.84 7.30 
(-1.36    -0.40) 5.47 5.93 6.39 6.84 7.30 
(-0.92    -1.07)  5.47 5.92 6.38 6.84 7.29 
(-0.20    -1.40) 5.42 5.88 6.33 6.78 7.23 
(0.58     -1.29) 5.43 5.88 6.34 6.79 7.24 
(1.19     -0.76) 5.47 5.92 6.38 6.83 7.29 
(0               0) 12.00 6.50 4.67 3.75 3.20 
Max SPV (0      0) (0        0) (-1.36   0.40) (-1.36  0.40) (-1.36   0.40) 
Max 12.00 6.50 6.39 6.84 7.30 

Rank of Det  M  4 1 2 3 5 

 

4.3 Comparison of the behavior of the Scaled Prediction Variances of equiradial 

designs for 200.1   and  
 
The Table 3.0 takes care of objective three, where  Max SPV point is the point on the design region with the 
highest SPV and Max is the value of the Maximum SPV.  
 

4.4 Discussion of results 
 
Consider Tables 1.0 and 2.0, the determinant value of information matrix increases for increasing axial 
distance for the corresponding design sizes and center runs. This implies that from equation (6), equiradial 

designs with ,2  is better than equiradial designs with 00.1  in terms of D – optimality 

criterion. The Scaled Prediction Variances for corresponding design locations in the design region reduces as 

radial point  1n  is increased, except for design center that was increased as radial point increase. As 1n  

increases, the determinant value of information matrix decreases when the equiradial design contains only 

one center point. For equiradial designs having 1cn  center point, the determinant value of the associated 

information matrix was highest at two center point as shown in the rank of Det (M) column in Table 3 but 

decreases for increasing center runs, cn . This holds true irrespective of the design radius  (axial distance).  

Increasing the axial distance increases the determinant of the information matrix by maximum of 0.07 units 

at two center points with the most minimum increase by 0.03 units at five center points. At 1cn , the 

maximum scaled predictive variance of associated with equiradial designs exactly equals the number of 

design points, N. However, 2cn  with corresponding maximum determinant of information matrix has 

the mini-max Scaled Prediction Variances and then increases as cn  increases. This indicates that equiradial 

designs give most precised when center point is two.  However as radial point increases, the maximum 

scaled predictive variance increases at 1cn  with  00  point and decreases at 1cn . With eight 

radial point, 1  and one center point, the maximum scaled predictive variance is at  00 point and at  
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Table 3. Summary of computations for spherical Equiradial designs ( 00.1 , 2  and cn ≥ 1 

 

      00.1  2      

Design Size N Radial Point 1n  Center Point cn  Det  M  Rank Max SPV point Max SPV Det  M  Rank Max SPV point Max Change in Det  M  Max SPV Indices 

9 8 1 0.00024 2 (0            0) 9.00 0.062 2 (0.00   0.00) 9.00 0.062  100% 
10   2 0.00026 1 (0.71  0.71) 6.29 0.066 1 (1.00   1.00) 6.29 0.065 100% 
11   3 0.00022 3 (0.71  0.71) 6.92 0.056 3 (1.00    1.00) 6.92 0.055 100% 
12   4 0.00017 4 (0.71  0.71) 7.55 0.044 4 (1.00    1.00) 7.55 0.044 100% 
13   5 0.00013 5 (0.71  0.71) 8.17 0.034 5 (1.00    1.00) 8.17 0.034 100% 
10 9 1 0.00023 3 (0             0) 10.00 0.059 3 (0.00    0.00) 10.00 0.058 100% 
11   2 0.00026 1 (-0.5   0.87) 6.16 0.066 1 (-0.71   1.23) 6.16 0.066 100% 
12   3 0.00023 2 (-0.5   0.87) 6.72 0.059 2 (-0.71   1.23) 6.72 0.059 100% 
13   4 0.00019 4 (-0.5   0.87) 7.28 0.049 4 (-0.71   1.23) 7.28 0.048 100% 
14   5 0.00015 5 (-0.5   0.87) 7.84 0.039 5 (-0.71   1.23) 7.84 0.039 100% 
11 10 1 0.00022 3 (0            0) 11.00 0.057 3 (0              0) 11.00 0.057 100% 
12   2 0.00026 1 (0.81   0.59) 6.01 0.067 1 (1.15    0.83) 6.01 0.067 100% 
13   3 0.00024 2 (0.81   0.59) 6.52 0.063 2 (1.15    0.83) 6.52 0.062 100% 
14   4 0.00021 4 (0.81   0.59) 7.02 0.053 4 (1.15    0.83) 7.02 0.053 100% 
15   5 0.00017 5 (0.81   0.59) 7.52 0.044 5 (1.15    0.83) 7.52 0.044 100% 
12 11 1 0.00021 4 (0             0) 12.00 0.053 4 (0               0) 12.00 0.053 100% 
13   2 0.00026 1 (0              0) 6.50 0.066 1 (0               0) 6.50 0.066 100% 
14   3 0.00025 2 (-0.96   0.28) 6.39 0.063 2 (-1.36    0.40) 6.39 0.063 100% 
15   4 0.00022 3 (-0.96   0.28) 6.84 0.056 3 (-1.36   0.40) 6.84 0.056 100% 
16   5 0.00019 5 (-0.96   0.28) 7.30 0.047 5 (-1.36   0.40) 7.30 0.047 100% 
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 71.071.0  as center point increases. With nine radial point, 1  and one center point, the maximum 

scaled predictive variance is at  00 point and at  87.05.0  as center point increases. With ten 

radial point, 1  and one center point, the maximum scaled predictive variance is at  00 point and at 

 59.081.0  as center point increases. With eleven radial point, 1  and one center point, the 

maximum scaled predictive variance is at  00 point and at  28.096.0  as center point increases. 

With eight radial point, 2  and one center point, the maximum scaled predictive variance is at 

 00 point and at  271.0271.0  as center point increases. With nine radial point, 2  and 

one center point, the maximum scaled predictive variance is at  00 point and at  287.025.0  

as center point increases. With ten radial point, 2  and one center point, the maximum scaled 

predictive variance is at  00 point and at  289.0281.0  as center point increases. With eleven 

radial point, 1  and one center point, the maximum scaled predictive variance is at  00 point and at 

 228.0296.0  as center point increases. This implies that increasing the number of center points 

pushes the maximum scaled predictive variance to the furthest distance from the design center and 
increasing the axial distance changes the design point with maximum scaled predictive variance by the 
number of units change in the axial distance. 
 

5 Conclusion  
 
The behaviours of the spherical equiradial designs under varying axial distances  , changing design sizes N 

and increased center points cn  have been examined. We therefore propose the following relationship 

between the equiradial designs with 1  and 2 as: (i) changing the axial distance changes the 

maximum determinant of the information matrix by five percent of the change in axial distance (ie 5% of 

1.414 = 0.07) (ii) increasing the number of cn  center points (greater than one) pushes the maximum scaled 

predictive variance to the furthest distance from the design point (0  0) (iii) changing the axial distance 
changes the design point with maximum scaled predictive variance by a multiple of the change and (iv) 
changing the axial distance does not change the maximum value of the scaled predictive variance at different 
radial points and center runs 
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