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ABSTRACT 
 

Checking a symbolic reliability expression for a flow network is useful for detecting faults in hand 
derivations and for debugging computer programs. This checking can be achieved in a systematic 
way, though it may be a formidable task. Three exhaustive tests are given when a reliability system 
or network has a flow constraint. These tests apply to unreliability and reliability expressions for 
non-coherent as well as coherent systems, and to cases when both nodes and branches are 
unreliable. Further properties of reliability expressions derived through various methods are 
discussed. All the tests and other pertinent results are proved and illustrated by examples. 

 
 
Keywords:  Reliability expression; exhaustive test; success state; failure state; prime implicant; Bayes 

decomposition; capacitated (flow) network. 
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1. INTRODUCTION 
 
When a symbolic reliability expression is 
obtained, whether by hand or by computer, the 
need arises for checking its correctness. This 
checking is very useful for detecting faults in 
hand derivations and for debugging computer 
programs. One way of checking a symbolic 
expression is to derive it by two truly independent 
means. However, different methods normally 
lead to non-identical, though equivalent, 
expressions. Therefore, additional work is 
needed to prove the equivalence of such 
expressions. The aim of this paper is to show 
that correctness of reliability expressions for flow 
networks can be proved in a systematic way, 
though indeed for long expressions it is a 
formidable task. Lee [1] extended the concept of 
terminal-pair reliability to cover the case of a flow 
network, namely, a network that is good if and 
only if a specified amount of flow can be 
transmitted from the input node to the output 
node [2-13]. Terminal-pair reliability expressions 
for flow or capacitated networks can be checked 
by any of the three exhaustive tests given in 
Section 4. These new tests are adaptations of 
some original tests given by Rushdi [14], in which 
reliability in a connectivity sense is checked, and 
which found a variety of applications [15-17]. Our 
new tests are not confined to the connectivity 
concept, as they pay due attention to the 
capacity constraints of the flow network.  These 
tests might be summarized as  
 

• Test 1, which is the analogue of the 
method of perfect induction in switching 
theory since it requires a consideration of 
all the states of the system. Therefore, its 
use is limited to small systems only.  

• Test 2, which is a simplification of test 1 in 
which the amount of work is minimized, but 
the prime implicants comprising the 
minimal sums for either the system 
success or the system failure is presumed 
known or must be computed. 

• Test 3, which handles the problem of 
checking an expression by breaking it 
down into disjoint subproblems which are 
more manageable and for which 
correctness can be verified separately.  

 
Examples illustrate the different tests, and proofs 
for these tests and for other pertinent results are 
included. The tests apply to reliability 
expressions for noncoherent as well as to 
coherent systems. They are initially developed 
for the case of a system with perfectly reliable 

nodes, and then modified to handle node 
unreliability. The tests apply to a flow or 
capacitated network having a capacity constraint. 
The paper contains a list of several conditions 
which are necessary for the correctness of 
reliability expressions derived through various 
methods. Unless otherwise stated, the results 
apply to unreliability as well as to reliability 
expressions.  
 
The organization of the remainder of this paper is 
as follows. Section 2 lists assumptions, notation 
and nomenclature, while Section 3 adds some 
preliminary definitions. Section 4 is the main 
contribution of this paper as it introduces the 
tests in ample detail, and supplements the 
exposition through eight demonstrative 
examples. Section 5 displays some further useful 
properties of reliability expressions, while Section 
6 considers the case of imperfect nodes. Section 
7 concludes the paper. An appendix presents 
proofs of the major theorems introduced 
throughout the paper. 
 

2. ASSUMPTIONS, NOTATION, AND 
NOMENCLATURE 

 

2.1 Assumptions 
 

1) The word “system” as used here refers to 
the reliability block (logic) diagram, not to a 
schematic, or physical diagram.  

2) The system is 2-state consisting of s-
independent 2-state branches and nodes 
that can be either good or failed. The s-
implies “statistically”. 

3) The reliabilities of branches and nodes are 
not necessarily equal. Initially the nodes 
are considered perfectly reliable; later the 
effect of node unreliability is included. 

4) There is no repair. All components are 
initially good. 

5) Both source-to-terminal reliability ���  and 
overall (network) reliability ��  are 
considered. 

 

2.2 Notation  
 

n, m: numbers of branches and nodes in the 
logic diagram of the system. 
 �� , �� : Indicator variables of successful and 
unsuccessful operation of branch � . These are 
switching random variables that take only one of 
the two discrete real values 0 and 1; �� = 1 and �� = 0  if �  is good, and �� = 0  and �� = 1  if �  is 
failed.  
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�� , �
� : indicator variables of successful and 
unsuccessful operation of node ��. 
 �, �̅ : indicator variables of successful and 
unsuccessful operation of the system; called 
system success and system failure, respectively.  
 �� , �� : reliability and unreliability of branch � ∶ �� ≡ Pr��� = 1� ; �� ≡ Pr��� = 1� = 1 − �� .  Both  ��   �! �� take real values on the closed interval 
[0.0, 1.0], i.e. 0.0 ≤ ��  , �� ≤ 1.0.  
 �#$ , �#$: reliability and unreliability of node ��. 
 �, % : reliability and unreliability of the system: � = Pr�� = 1� ; % = Pr��̅ = 1� = 1 − �;  0 ≤ �,% ≤ 1. The superscripts &' and ( may be added 
to either � () %  to indicate the descriptions 
“source-to-terminal” and “overall” respectively. 
 *�:        flow capacity of branch  ; *� ≥ 0 . 
 ,�-.�/ : capacity function of .�, 0/  which is the 

maximum flow interconnection from � to 0 in state �  that does not violate branch capacities, ,�-.�/ ≥ 0.  For an original  .�, 0/ ∶   ,�- = *�-��- . 

Since � is a switching random vector, ,�-.�/ is a 

discrete random variable of a probability mass 
function (pmf) of no more than 2# distinct values.     
 ,�-2 :     terminal- pair capacity function from node � to node 0 ;   ,�-2 ≥ 0 .    

 �, �, * :  n dimensional vectors of branch 
successes, reliabilities and capacities:  
 � = .�3�4 … �#/2; � = .�3�4 … �#/2  ; 6 ≡ .*3*4 … *#/2 . 
 7 : A superscript that implies ‘transpose of a 
matrix or vector.’ 
 

2.3 Nomenclature 
 
Correct expression: The expression �.�/  is 
correct if when given any valid input � , it 
produces the correct value for �. 
 
A Boolean (Switching) function 8.9/:  A 
mapping �0, 1�#  → �0, 1� , i.e., �.�/  is any one 
particular assignment of the two functional values 
(0 or 1) for all possible 2#  values of �  [18-20]. 
These values of �  are called the states of the 
system described by �.  
 
Pseudo- Boolean (Switching) function  C.X/: A  
mapping �0, 1�#  → � where  � is the field of real 

numbers, i.e. ,.�/  is an assignment of a real 
number for each of the possible 2#  values of � [4,21,12,20,22-28].  
 
Multiaffine function of n variables >.?@, ?A … , ?B/: An algebraic function which is a 
first-degree polynomial in each of its variables, 
i.e., if fixed values are given to any .� − 1/ 
variables, the function reduces to a first-degree 
polynomial in the remaining variable [14]. 
Multiaffine functions include: (a) Certain 
algebraic functions such as system reliability/ 
unreliability and system availability/unavailability 
[29]. (b) Pseudo-Boolean (switching) functions 
[23-28] such as source-to-terminal capacity or 
the squared capacity as a function of link 
successes. 
 
To subsume: A logical product or term C is said 
to subsume another product or term D  if C 
implies D. This occurs when all the literals of D 
are contained among those of C, e.g., the term �3�4�E  subsumes the terms  1, �3, �4, �E, �3�4, �4�E, �3�E,  and also itself 
[30,31]. In a disjunction of a subsuming term    
and a subsumed one, the subsuming term is 
deleted, and said to be absorbed in the 
subsumed one. 
 
A prime implicant (FG) of a switching function 8: A term that implies S, such that no other term 
subsumed by it implies S [30,31].  
 

3. PRELIMINARIES  
 

3.1 Success/ Failure Functions 
 
For a coherent system, the success function �.�/  is monotonically increasing, and its 

complement the failure function �̅.�/  is 
monotonically decreasing [32,33]. Hence �  is 
expressible as a sum of products of the 

uncomplemented literals ��  alone ( �̅  is 
expressible as a sum of products of the 

complemented literals ��  alone) [30,31]. The 
minimal sum-of-products (s-o-p) expression for 
success (or failure) is unique since each of the 
products appearing in it represents an essential 
or core DI of the function [34,35].  
 
For a noncoherent system, the minimal sum 
(minimal disjunctive (s-o-p) form) of the success 
or failure function is the union of certain DI& of 
the function that may or may not be essential, so 
that the minimal sum is not usually unique 
[20,36]. 
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3.2 Capacity and Its Mean 
 
The function ,�-.J/ , which is as an expression of 

the source-to-terminal capacity as a function of 
element successes is a real valued function of 
binary arguments. Therefore, the function ,�-.J/ 

conforms to the rules of the algebraic 
decomposition relation of a pseudo-Boolean 
(switching) function [4]. 
  ,�-.�/ = �K  ,�-.�|MK/ N �K,�-.�|1K/ 

             = .1 − �K/,�-.�|0K/ N �K  ,�-.�|1K/ 

             = ,�-.�|MK/ N O ,�-.�|1K/ −,�-.�|MK/P�K  , Q = 1,2, … , �                           (1)  

 
Equation (1) can be validated through proof by 
perfect induction covering all cases or values of 
X, viz., ��|0K�  and ��|1K�.   This decomposition 
relation of ,�-.�/ can be used to deduce many 

properties of it as a pseudo-switching function, 
including, in particular, its being a multi-affine 
function,  and the fact that it can be expressed as 
a sum-of-products form, where the term ‘sum’ 
here refers to its genuine meaning of real 
addition. Moreover, ,�-.�/ can be viewed as an 

assignment of a real number for each of the 
possible 2# values of the input vector � [4]. 
 
The mean (expected) value of the random 
function ,�-.�/, when written in sum-of-products 

form, equates to; 
     R�,�-.�/ � = R�,�-�.�/ , 
 
and can be directly obtained (on a one-to-one 
basis) from ,�-.�/ (s-o-p) by introducing the 

component means �K = E��K� and  �K = R��K�, in 
place of the corresponding Boolean arguments �K, and �K , namely [4],  
 

  (2) 
 
Another subtle replacement that is implicit in (2) 
pertains to substituting arithmetic multiplication in 
the R.H.S. for the logical multiplication in the 
L.H.S., a substitution that is not explicitly 
apparent since both operations are represented 
by juxta-positioning. Equation (2) is an immediate 
result of the condition that the mean of a sum is 
the sum of means and that the �KT&  are 
statistically independent. It is important to note 

that the capacity ,�-.�/ and its square ,�-4 .�/ are 

both pseudo-switching functions. Thus, to readily 

convert  ,�-4 .�/  into its mean, ,�-4 .�/  can be 

represented in s-o-p form, namely [4] 
 

(3) 
 
Equations (2) and (3) show that computing the 

mean R�,�-� and the variance of the capacity 

 UV��,�-� = R�,�-4 � − WR�,�-�X4
 can be achieved by 

ensuring that both the capacity itself and its 
square are expressed in s-o-p form [4]. 
 

3.3 Reliability/Unreliability Functions  
 
Rule 1: A reliability function �.�/ is a multiaffine 
function, and hence can be determined uniquely 
in terms of  2# coefficients. In fact, the reliability 
function �.�/ can be written in the form [14]:   
 �.�/ = ,Y N ∑ ,�  �� N  ∑ ∑ ,�-  ���- N-[#3[�#�\3 ∑ ∑ ∑ ,�-]  ���-�] N ⋯ N ,34E…#][# �3�4. . �#-_]3[�     (4) 

 
Or more compactly as:  
 �.�/ = `2.�/ ,                                           (5) 
 
Where the vectors `.�/  and  ,  are:  
 `.�/ =O1,  �3,  �4, … ,  �#,  �3�4, … ,  �.#a3/ �#, … ,  �3�4. . �# b2

  (6) 

 , = O ,Y,  ,3,  ,4, … , ,#,  ,34, … ,  ,.#a3/#, … ,  ,34..#b2        (7) 

 

The dimension of either `.c/ or d is  OW#YX N W#3X NW#4X N ⋯ N W##Xb = 2# 

 

4. EXHAUSTIVE TESTS  
 

4.1 Test 1 
 

The symbolic expression of the random function ,�-.�/ is correct if and only if (iff) it is a multiaffine 

function that has a correct ‘truth table,’ i.e., it 
yields the correct value of ,�-  for the values of 

the input vector � implied by all the states of the 
system, i.e. for the 2# values � takes when each 
of its components are allowed to take either one 
of  its two possible values of 0 or 1.This test 
might alternatively be applied to the expected 
(mean) value R�,�-�.�/, which again must be a 

multiaffine function of a correct ‘truth table.’ A 



subtle difference in this case is that 
valued (in the unit interval [0.0, 1.0], but we 
assign to it only the same binary combinations 
assigned to � above. In both cases of  R�,�-�.�/ , it might be more convenient to 

construct the ‘truth table’ in Karnaugh
as can be seen in Fig. 2.  
 

1.2 Example 1  
 
The following multiaffine reliability expression is 
obtained in Rushdi [4] for the small bridge
system shown in Fig. 1, whose branch capacities 
are:    6 = e 10  4  5  3  4 P2 

 

The final s-o-p expression for ,3i
mean are  
 ,3i.�/ = 4�jW�4 N �3�4�EX N 3��3�4�E�jX                                                  
 R�,3i�.�/ = 4�j.�4 N �3�4�E/ N�3�4�E�j/                                                    

 
If all branches have the same reliability 
unreliability �, then  
 R�,3i�.�/ = 4�4.1 N ��/ N 3�4.1 N�4W7 N ��.4 N 3�/X                                         

 
For  � = 0.9  and  � = 0.1  
 R�,3i�.�/ = 5.98347  
 
Each of the functions ,3i.�3, �4, �R�,3i�.�3, �4, �E, �i, �j/  is a multiaffine function. 
Table 1 shows that either expression also yields 
correct results for the 32 values comprising the 
system states, or the input domain of the ‘truth 

 

Fig. 1. A 5-branch bridge network of a capacity vector 
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that �  is real-
valued (in the unit interval [0.0, 1.0], but we 
assign to it only the same binary combinations 

In both cases of ,�-.�/ or 

, it might be more convenient to 

construct the ‘truth table’ in Karnaugh-map form 

The following multiaffine reliability expression is 
] for the small bridge-
whose branch capacities 

,3i.J/ and its 

X �iW�3 N
                                                  (8) 

/ N 3�i.�3 N
                                                    (9) 

If all branches have the same reliability �  and 

. �4� / =
                                         (10) 

�E, �i, �j/  and 
is a multiaffine function. 

Table 1 shows that either expression also yields 
correct results for the 32 values comprising the 

he input domain of the ‘truth 

table.’. Expressions (8)-(10) are, therefore, 
correct.  
 
Test 1 is tedious and impractical even for 
expressions of moderate size. Table 1 shows 
that certain patterns of repetitions take place in 
the checks of Test 1. To save some work, these 
repetitions can be exploited by replacing each 
group of similar checks by one.  
 

4.3 Rule 2 
 
If either the expression ,�-.�/  or 

functionally correct for a value of �
by a prime implicant ( DI ) 
success/failure function, then it is correct for the 
values of �  implied by all the 
implicants (minterms) C that subsume the prime 
implicant D.  
 

4.4 Example 2  
 
 The s-o-p expression (8) yields the correct result 
of 
 ,3i.J/ = 4.1/ n�4 N .1/�4.1/o N 3�iW..0/�4.1/.0/X = 4 N 3�i                                           

 
for � = e1 − 1 − 1P2, where (−) denotes a don’t
care value. This �  corresponds to the term�3�E�j  which is a DI  of the system success 
function. This verifies that (8) is correct for the 
four values of �e10101P2, e 11101P2 , e10111P2 , e 11111
Correctness of (11) might be verified via the min
cut max-flow theorem, namely  
 ,3i.�/ = min�10 N 4�4 , 10 N 5 NN 3�i, 4 N 3�i�

 

 

branch bridge network of a capacity vector  6 = e @s  t  u  v  t
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(10) are, therefore, 

Test 1 is tedious and impractical even for 
expressions of moderate size. Table 1 shows 
that certain patterns of repetitions take place in 
the checks of Test 1. To save some work, these 
repetitions can be exploited by replacing each 

. / or R�,�-�.�/  is � (or �) implied 
) D  of system 

success/failure function, then it is correct for the 
implied by all the single-cell 

that subsume the prime 

p expression (8) yields the correct result 

W.1/ N
                                           (11) 

) denotes a don’t-
corresponds to the term 

of the system success 
function. This verifies that (8) is correct for the 

 given by 11111P2.  
Correctness of (11) might be verified via the min-

N 4, 5 N 4�4� = 4 N 3�i. 

t Pw 



Table 1. Exhaustive test for all 32 states of 
expectation function is zero for a failed state, and the two functions share the same non

 x J@ 9A Jv 

0. 0 0 0 
1. 1 0 0 
2. 0 1 0 
3. 1 1 0 
4. 0 0 1 
5. 1 0 1 
6. 0 1 1 
7. 1 1 1 
8. 0 0 0 
9. 1 0 0 

10. 0 1 0 
11. 1 1 0 
12. 0 0 1 
13. 1 0 1 
14. 0 1 1 
15. 1 1 1 
16. 0 0 0 
17. 1 0 0 
18. 0 1 0 
19. 1 1 0 
20. 0 0 1 
21. 1 0 1 
22. 0 1 1 
23. 1 1 1 
24. 0 0 0 
25. 1 0 0 
26. 0 1 0 
27. 1 1 0 
28. 0 0 1 
29. 1 0 1 
30. 0 1 1 
31. 1 1 1 

 

 
Fig. 2. Modified Karnaugh 

Alsalami and Rushdi; JERR, 18(2): 12-29, 2020; Article no.

 
17 

 

 
Table 1. Exhaustive test for all 32 states of example 1. Each of the capacity function and its 

expectation function is zero for a failed state, and the two functions share the same non
value for a success state 

Jt Ju d@t.J/ y�d@t�.c/ 
when c = J  

0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
1 0 0 0 
1 0 3 3 
1 0 0 0 
1 0 3 3 
1 0 0 0 
1 0 3 3 
1 0 3 3 
1 0 3 3 
0 1 0 0 
0 1 0 0 
0 1 4 4 
0 1 4 4 
0 1 0 0 
0 1 4 4 
0 1 4 4 
0 1 4 4 
1 1 0 0 
1 1 3 3 
1 1 4 4 
1 1 7 7 
1 1 0 0 
1 1 7 7 
1 1 4 4 
1 1 7 7 

  d@t.J/ 

arnaugh map representing the pseudo-Boolean function 
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1. Each of the capacity function and its 
expectation function is zero for a failed state, and the two functions share the same non-zero 

Successful 
states 

No 
No 
No 
No 
No 
No 
No 
No 
No 
Yes 
No 
Yes 
No 
Yes 
Yes 
Yes 
No 
No 
Yes 
Yes 
No 
Yes 
Yes 
Yes 
No 
Yes 
Yes 
Yes 
No 
Yes 
Yes 
Yes 

 d@t.J/ 
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With the aid of the success version of rule 2, Test 
1 can be partially replaced by a Test 2 that 
requires less work for success states. To obtain 
a test that is faster for all states, we now 
introduce Test 2, which not only benefits of the 
success version of rule 2, but also utilizes its dual 
or failure version, which covers failure states 
collectively by checking the prime implicants 
(rather than individual cells or configurations) of 
failure.  
 

4.5 Test 2 
 
The symbolic expression of each of the random 
capacity pseudo-Boolean function ,�-.�/ and the 

random success Boolean function ��-.�/  is 

correct if and only if it is a multiaffine function that 
has a correct ‘truth table,’ i.e., it yields the correct 
results of 0 or 1 of ��-.�/ and  yields the correct 

value of ,�-  for the values of the input vector J 

implied by: 
 

a) DI&  of the system success function that 
comprise a minimal sum for that function, 
and     

b) DI&  of the system failure function that 
comprise a minimal sum for that function.        

 
As mentioned earlier, sets (a) and (b) of DI& are 
unique for coherent systems. For terminal pair 
reliability set (a) contains the minimal s-t paths 
and set (b) is that of the minimal s-t cutsets, 
while for overall reliability set (a) is the set of all 
spanning tree terms and set (b) is that of the 
minimal overall cutsets of the network graph [28]. 
 

In a capacitated or a flow network, the set (a) of 
PIs should contain the minimal valid path groups, 
which are combinations of the forward s-t paths 

of the network graph, which satisfy the flow 
constraint, and the set (b) should include the 
minimal valid cut groups, which are subsets of 
the s-t cutsets, which just suffice to prevent the 
transmission of the required capacity. 
 
Each of the sets (a) and (b) consists of at most  2#a3  DI& [19], and hence Test 2 certainly does 
not need more checks than Test 1. In fact, the 
number of checks needed by Test 2 is usually 
much less than that needed by Test 1. For 
example, in the case of ���  for a coherent 
system, the number of checks required by Test 2 
is of the order of [14]:  
 2#az{4 N 2za4 = 2#e2az{4 N 2a#{za4 P 
 
which is much less than the number 2#  (of 
checks required by Test 1) when | ≫ 2  and � > 2|. Recall that n and m are the numbers of 
branches and nodes in the logic diagram of the 
system. 
 
The conversion from the pseudo-Boolean 
function ,�-.�/  to the Boolean function of 

success ��-.�/  can be done by replacing all 

real non-zero numbers by one and substituting 
the mathematical operators�N, •� by their logic 
counterparts �∨, ∧�. 
 

4.6 Example 3  
 
Table 2 gives the different checks required by 
Test 2 to show the correctness of the multiaffine 
expressions (8)-(10). For convenience, we 
perform Test 2 for a set of disjoint rather than 
minimal paths. Fig. 3 shows the Karnaugh map 
that represents the disjoint paths for the network 
in Fig. 1, which are employed in Table 2. 

 
Table 2. Test 2 based on the minimal s-t cutsets and disjoint paths of example 3 

 

Path J@ 9A Jv Jt Ju d@t.J/ �@t.J/ Successful 
states �3�i 1 - - 1 - 3 N �j.4�4 N 4�4�E/ 1 Yes �3�4�j 0 1 - - 1 4 1 Yes �3�4�i�j 1 1 - 0 1 4 1 Yes �3�4�E�i�j 1 0 1 0 1 4 1 Yes �3�4�E�i�j 0 1 1 1 0 3 1 Yes 

Cut J@ 9A Jv Jt Ju d@t.J/ �@t.J/ Successful 
states �3�4 0 0 - - - 0 0 No �i�j - - - 0 0 0 0 No �3�E�j 0 - 0 - 0 0 0 No �4�E�i - 0 0 0 - 0 0 No 



 
Fig. 3. Modified Karnaugh map representing the disjoint s�3i.

 

Fig. 4. A 7-branch bridge network of a capacity vector 
 

4.7 Example 4 
 
The following reliability expression is given in 
Rushdi and Alsalami [22] for a 7-branch bridge 
network in Fig. 4, whose branch capacities are:    6 = e 6  7  4  10  5  3  4 P2 .The minimal sum
product equation for the pseudo
function ,��.�/ and the corresponding one for its 
mean are 
 ,��.�/ =  �E�je 3 ���i�3 N 4 ���4  P �E�j  e3 �� n�4 N �3�4�i.1 N ��/o N�3�4�i��/ P N �E�j e4 � �  n �4 N �3��i��Xo N 3 �i��.�4 N �3�4.1 N ��//
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Fig. 3. Modified Karnaugh map representing the disjoint s-t path  .J/ for the network of example 3 

 
 

branch bridge network of a capacity vector  6 = e �  �  t  @s  u  v
The following reliability expression is given in 

branch bridge 
in Fig. 4, whose branch capacities are:    

The minimal sum-of-
product equation for the pseudo-switching 

and the corresponding one for its 

P N/o N 4 ��.�4 N�4W�� N/P N

 �E�j e3 ��W�3 N 3 ���i�4�3 N  �3�4 ��W�4 N   ���4�3X N �����i�4�3  
 R�,���.�/ = �E�je3 ���i�3 N 4 ���4P�E�je 3 ��. �4 N �3�4�i .1 N ��/ / N�3�4�i��/P N  �E�jO 4 �� W �4 N �3�43 �i��W�4 N �3�4.1 N ��/Xb N �E�je 3 ���i�4�3 N �3�4/ N 4 ��.�4 N ���4�����i�4�3P                                                   
 
The function R�,���.�3, �4, �E, �i
multiaffine. Table 3 shows the correctness of the 
multiaffine expressions (12a) & (12b) by applying 
Test 2. Fig. 5 shows the represent
paths for the network in Fig. 4. 
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v  t Pw 

�4X N P             (12a) 

P N/ N 4 ��.�4 N.�� N �i��/X Ne 3 ��.�3 N4�3/ N
                                                   (12b) 

i, �j, ��, ��/  is 
multiaffine. Table 3 shows the correctness of the 
multiaffine expressions (12a) & (12b) by applying 

representing the disjoint 



Table 3. Test 2 via minimal 
 

Path J@ 9A Jv 

�4�� - 1 - 

�4�E�i�j���� - 1 1 �4�j���� - 1 - �3�4�E�i�j���� 1 1 0 �3�4�E�i�� 1 0 0 �3�4�E�i�j���� 1 0 0 �3�4�E�j���� 1 0 1 �3�4�E�� 1 0 1 �3 �4�E�i�j���� 1 0 1 

Cut J@ 9A Jv 

�3�4 0 0 - ���� - - - �4�E�i - 0 0 �i�j�� - - - �3�E�j�� 0 - 0 �4�E�j�� - 0 0 

Fig. 5. Modified Karnaugh map representing the disjoint s

 

4.8 Example 5 
 

The following multiaffine reliability 
expression is obtained for a 9
network in Fig. 6, whose branch capacities are:
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Test 2 via minimal s-t cutsets and disjoint paths of example 4

Jt Ju J� J� d��.J/ ���.J/ 

- - - 1 4N 3 ��  n �jN �i �j  W 1 N �3�E Xo 

1 

1 0 1 0 3 1 

- 1 1 0 3 1 

1 0 1 0 3 1 

1 - 1 - 3 N 3 �j�� 1 

1 1 0 1 4 1 

- 1 1 0 3 1 

- - - 1 4 N 2�i�� 1 

1 0 1 0 3 1 Jt Ju J� J� d��.J/ ���.J/ 

- - - - 0 0 

- - 0 0 0 0 

0 - - - 0 0 

0 0 - 0 0 0 

- 0 - 0 0 0 

- 0 0 - 0 0 

 
 

���.J/ 
 

Fig. 5. Modified Karnaugh map representing the disjoint s-t path ���.J/ for the network
example 4 

The following multiaffine reliability            
for a 9-branch                

6, whose branch capacities are: 

    * = e 2  3  4  5  6  7  8  9  10 P2 
 
The minimal sum-of-product equation for the 
pseudo-switching function ,��.
corresponding one for its mean are
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. / Successful 
states 
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Yes 
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Yes 
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Yes 

Yes 

Yes 

Yes . / Successful 
states 

No 

No 

No 

No 

No 

No 

 

for the network of 

product equation for the .�/  and the 
ean are 



 

Fig. 6. A 9-branch (corridor) ecological network of a capacity vector 

 ,��.J/ = 11 �4���� N 10 �3�4���3�4Xo� N 4W�E N �3�4�i�j����4�i�j����X N �4���� n�3�� N
 R�,���.�/ = 11 �4���� N 10 �3�4�3�4/Xo N 4.�E N �3�4�i�j�����2�3��.�4�� N �4�i�j����/ N �4�
 

The function R�,���.�3, �4, �E, �i, �j
multiaffine expressions (13) & (14) by applying Test 2. Fig
represents the disjoint paths for the network in Fig
 

 

Fig. 7. Modified Karnaugh map representing the disjoint s
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branch (corridor) ecological network of a capacity vector   6 = e A  v  t  u  �  �  �  �  @s Pw 

��� N 8W�4�� N �3�4����X N 5�i ��j N �j n�� N ���
����X N 3�4 n���� N �3����W�� N �i�j��Xo N 2�3��W�j��W�3 N �3�iXo                                                                      

4���� N 8.�4�� N �3�4����/ N 5�i n�j N �jW�� N �������/ N 3�4W���� N �3����.�� N �i�j��/X N����W�3�� N �j��.�3 N �3�i/X                                                       

j, ��, ��/  is multiaffine. Table 4 shows the correctness of the 
multiaffine expressions (13) & (14) by applying Test 2. Fig. 7 shows the Karnaugh map that 
represents the disjoint paths for the network in Fig. 6. 

map representing the disjoint s-t path ���.J/ for the network
example 5 
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branch (corridor) ecological network of a capacity vector 

����W�3 NW�4�� N
                                                                     (13) 

��.�3 N
                                                      (14) 

is multiaffine. Table 4 shows the correctness of the 
7 shows the Karnaugh map that 

 

 

for the network of 
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Table 4. minimal s-t cutsets and disjoint paths test of example 5 
 

Path J@ 9A Jv Jt Ju J� J� J� J� y�d���.c/ ���.J/ Successful 
states D3 = �E - - 1 - - - - - - (15a) 1 Yes D4 = �EX� - - 0 - - - 1 - - (15b) 1 Yes DE = �4�E���� - 1 0 - - 1 0 - - (15c) 1 Yes Di = �3�4�E���� 1 1 0 - - 0 0 - - (15d) 1 Yes Dj = �4�E�i�j�� - 0 0 1 1 - 0 - - (15e) 1 Yes D� = �4�E�i�j���� - 0 0 1 0 - 0 1 - (15f) 1 Yes D� = �3�4�E�������� 0 1 0 - - 0 0 1 1 (15g) 1 Yes D� = �3�4�E�i�������� 0 1 0 1 - 0 0 1 0 (15h) 1 Yes D� = �3�4�E�j�������� 0 1 0 - 1 0 0 0 1 (15i) 1 Yes D3Y= �4�E�i�j�������� 

- 0 0 1 0 1 0 0 1 (15j) 1 Yes 

D33= �3�4�E�i�j�������� 

1 0 0 1 0 0 0 0 1 (15k) 1 Yes 

D34= �3�4�E�i�j�������� 

0 1 0 1 1 0 0 0 0 (15l) 1 Yes 

Cut J@ 9A Jv Jt Ju J� J� J� J� y�d���.c/ ���.J/ Successful 
states �3�E�j������ 0 - 0 - 0 0 0 0 - 0 0 No �4�E�i�� - 0 0 0 - - 0  - 0 0 No �4�E�j������ - 0 0 - 0 - 0 0 0 0 0 No �3�E�i������ 0 - 0 0 - 0 0 - 0 0 0 No 

 R�,��.J|D3 = 1/� = 11 �4���� N 10 �3�4���� N 8��.�4 N �3�4��/ N 5�i n �j N  �jW�� N ������.�3 N �3�4/Xo N 4 .1 N  �3�4�i�j������/ N 3�4W ���� N  �3����. �� N �i�j��/X N 2�3��.�4�� N �4�i�j����/ N �4����W �3�� N �j��. �3 N  �3�i/X                                                                       (15a) 

 R�,��.J|D4 = 1/� = 11.�4��/ N 10.�3�4��/ N 8.�4 N �3�4��/ N 5 n�i N �i�jW�� N ������.�3 N�3�4/Xo  N 4.�3�4�i�j������/ N  3�3�4����.�� N �i�j��/ N 2.�3�4�i�j������/ N �4���� n�3W�� N�j��.1 N �3�i/Xo                                                                                                                        (15b) 

 R�,��.J|DE = 1/� = 5W�i�j N �i�j.�� N �3����/X N 4.�3�i�j����/ N 3                                      (15c) 

 R�,��.J|Di = 1/� = 5�i.�j N �j��/ N 2 N ��.�� N �j��/                                                                   (15d) 
 R�,��.J|Dj = 1/� = 5                              (15e) 

 R�,��.J|D� = 1/� = 5                               (15f) 

 R�,��.J|D� = 1/�  = 5�i N 3                    (15g) 

 R�,��.J|D� = 1/� = 5                              (15h) 
 R�,��.J|D� = 1/� = 3.1 N �i/                  (15i) 
 R�,��.J|D3Y = 1/�  = 5                             (15j) 
 R�,��.J|D33 = 1/�  = 2                            (15k) 

R�,��.J|D34 = 1/�  = 5                             (15l) 
 

4.9 Test 3 
 

The symbolic expression of the random function ,�-.J/ is correct if it is a multiaffine function that 

reduces to the correct reliability expressions of 
the subsystems derived from the original system 
through a Boole-Shannon decomposition [30] 
with respect to � admissible keystone elements.   
 

Test 3 is useful when the subsystems obtained 
are simple. If � = � , Test 3 and Test 1 are the 
same. 
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4.10 Example 6 
 
The problem of Examples 4 for a moderate 
system having seven &-independent branches is 
now revisited by applying Test 3.  
 
An application of Test 3, with branches 2, 3, 5 
and 6 taken as keystone elements, results in 
Table 5, which consists of 2i = 16  lines. The 
results in the 16 lines of this table are correct, as 
can be easily seen by considering the 
corresponding subsystems derived from the 
original system. The table could have been 
shortened by combining some of its lines, e.g. 
the entries in lines (1001), (1011), (1101), (1111) 
are the same, and these lines can be combined 
as (1 - - 1). 
 

4.11 Example 7 
 
The problem of Examples 5 for a 9-branch 
network in Fig. 6 is now revisited by applying 
Test 3. An application of Test 3, with branches 1, 
2, 6 and 7 taken as keystone elements, results in 
Table 6, which consists of 2i = 16  lines. The 
results in the 16 lines of this table are correct, as 
can be easily seen by considering the 
corresponding subsystems derived from the 
original system. 
 

4.12 Example 8 
 
This example illustrates an alternative way of 
applying Test 3 to (11) & (12). Initially branch 2 
alone is taken as a keystone element. So, 
decomposing the capacity function ,��.J/  with 

respect to the indicator variable �4 in Fig. 4, the 
following special case of (1) is obtained:  
 ,��.J/ =  �4,��.J|14/ N �4,��.J|04/                (16a) 
 

The subfunction ,��.�|14/ is the capacity function 
of the subnetwork derived from the original 
network and this subnetwork reduces to a series-
parallel subsystem as:  
 ,��.�|14/ =  �E�je 3���i�3 N 4��P N �E�je3�� N4��P N �E�je4�� N 3�i��P N �E�je3�� N 4��P  
 R�,��.�|14/�.�/ =  �E�je 3���i�3 N 4��P N �E�je3�� N 4��P N �E�je4�� N 3�i��P N �E�je3�� N4��P                (16b) 
 

On the other hand, the subfunction ,��.�|04/ is 
still complex (does not represent a simple series-
parallel system) and consequently it is 
decomposed further with respect to a second 
keystone variable, say �j  to give 2 simple 
subsystems. i.e.  
 ,��.�|04/ =  �j,��.�|04, 1j/ N �j,��.�|04, 0j/     (16c) 
 

Where each of ,��.�|04, 1j/   and ,��.�|04, 0j/ 
represents a simple series-parallel system and 
therefore, we obtain: 
 ,��.�|04, 0j/ = �3 � 3�E�i��N �E n4�3��W�� N �i��XN 3�i��.1 N ��/o�  
 R�,��.�|04, 0j/�.�/ = �3O 3�E�i�� N �EW4�3��.�� N�i��/ N 3�i��.1 N ��/Xb                                     (16d.i) 

 
Table 5. Test 3 (decomposition test) for all states of example 6 

 x JA 9v Ju J� d��.J/ y�d���.c/ 0. 0 0 0 0 0 0 
1.  0 0 0 1 3�3�i 3�3�i 
2.  0 0 1 0 4�3�i�� 4�3�i�� 
3.  0 0 1 1 3�3�i.1 N ��/ 3�3�i.1 N ��/ 
4.  0 1 0 0 4�3�� 4�3�� 
5.  0 1 0 1 3�3�i.1 N ��/ N 4�3�i�� 3�3�i.1 N ��/ N 4�3�i�� 

6.  0 1 1 0 4�3�� 4�3�� 
7.  0 1 1 1 3�3.1 N �i��/ N �3�i�� 3�3.1 N �i��/ N �3�i�� 

8.  1 0 0 0 4�� 4�� 
9.  1 0 0 1 4�� 4�� 
10.  1 0 1 0 4�� 4�� 
11.  1 0 1 1 3 N 4�� 3 N 4�� 
12.  1 1 0 0 4�� 4�� 
13.  1 1 0 1 4�� N 3�i 4�� N 3�i 
14.  1 1 1 0 4�� 4�� 
15.  1 1 1 1 3 N 4�� 3 N 4�� 
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Table 6. Test 3 (decomposition test) for all states of example 7 

 x J@ 9A J� J� d��.J/ y�d���.c/ 0. 0 0 0 0 4�E N 5�iW�j N  �j��X 
4�E N 5�i.�j N  �j��/ 

1.  0 0 0 1 8 N 4�E N 5�iW�j N �j��X 8 N 4�E N 5�i.�j N �j��/ 

2.  0 0 1 0 4�E N 5�iW�j N�jW�� N  ����X X  

4�E N 5�i.�j N�j.�� N  ����/ /  

3.  0 0 1 1 8 N 4�E N 5�i n�� N ��W�� N �j�� Xo  

8 N 4�E N 5�iW�� N ��.�� N �j�� /X  

4.  0 1 0 0 �i�j���� N 3��W�� N �i�j��X N 4�E N5�iW�j N  �j��X  

�i�j���� N 3��.�� N �i�j��/ N 4�E N5�i.�j N  �j��/  

5.  0 1 0 1 � 8 N �i�j���� N3��W�� N �i�j��X N 4�E N5�iW�j N �j��X�  
� 8 N �i�j���� N3��.�� N �i�j��/ N 4�E N5�i.�j N �j��/�  

6.  0 1 1 0 3 N 4W�E N �i�j����X N5�iW�j N  �j��X  

3 N 4.�E N �i�j����/ N5�i.�j N  �j��/  

7.  0 1 1 1 � 11 N 4W�E N �i�j����X N5 �iW �j N  �j��X�  � 11 N 4.�E N �i�j����/ N5 �i. �j N  �j��/�  
8.  1 0 0 0 2�i�j���� N 4�E N5�iW�j N  �j��X  

2�i�j���� N 4�E N5�i.�j N  �j��/  

9.  1 0 0 1 8 N 2�i�j���� N 4�E N5�iW�j N  �j��X  

8 N 2�i�j���� N 4�E N5�i.�j N  �j��/  

10.  1 0 1 0 4�E N 5�i n�j N �jW�� N  ����Xo  

4�E N 5�iW�j N �j.�� N  ����/X  

11.  1 0 1 1 8 N 4�E N 5�i n�j N�jW�� N ����Xo  

8 N 4�E N 5�iW�j N�j.�� N ����/X  

12.  1 1 0 0 2 N ��W�� N �j��X N 4�E N5�iW�j N  �j��X   2 N ��.�� N �j��/ N 4�E N5�i.�j N  �j��/  

13.  1 1 0 1 10 N ��W�� N �j��X N4�E N 5�iW�j N  �j��X  

10 N ��.�� N �j��/ N4�E N 5�i.�j N  �j��/  

14.  1 1 1 0 3 N 4�E N 5�i n �j N �jW �� N  ����Xo  

3 N 4�E N 5�iW �j N �j. �� N  ����/X  

15.  1 1 1 1 11 N 4�E N 5�i n �j N �jW �� N ����Xo  

11 N 4�E N 5�iW �j N �j. �� N ����/X  

 ,��.J|04, 1j/ = �3�E�iO 3��.1 N ��/ N 4����b N�3�EO 3��.1 N �i��/ N ��W4�� N �i��Xb  
 R�,��.J|04, 1j/�.c/ = �3�E�ie 3��.1 N ��/ N 4����P N�3�Ee 3��.1 N �i��/ N ��.4�� N �i��/P              (16d.ii) 

 
These sub-functions can be substitute into (16a) 
to get the equivalent expression (11) and its 
mean (12). 

5. FURTHER PROPERTIES OF 
RELIABILITY EXPRESSIONS  

 

A reliability expression which is obtained by an 
inclusion-exclusion method [30] takes a form 
similar to that in (4), i.e. one that does not 
contain the components unreliabilities �� = 1 − �� 
explicitly. The coefficients d in (4) can take some 
positive, zero, or negative integral values. For 

coherent systems �.�Y/ = 0  and  �W�.4�a3/X =
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1 where  �YW�.4�a3/X  is the vector with all 0(1) 

components, hence in (2):  
 ,Y = 0;                                                      (17) 
 
Sum of components of , = 1.  
 
Since the unreliability %.�/ is:                        (18) 
 %.�/ = 1 − �.�/ = 1 − `2.�/, = `2.�/�, 19) 
 
Then for a coherent system:  
 �Y = 1,                                                      (20) 
 
Sum of components of � = 0.                         (21) 
 
If the reliability expression is obtained by state 
enumeration, it takes the form:  
 � = CY�3�4�E … �# N C3�3�4�E … �# NC4�4�3�E … �# N CE�3�4�E … �# N ⋯ NC.4�a3/�3�4�E … �#                                   (22) 

 
Where the coefficients C are either 0 or 1. For a 
coherent system: 
 CY = 0                                                      (23) 

 C.4�a3/ = 1.                                                          (24) 

 
If (19) is used to represent %  with the C′& 
replaced by �′&, then for a coherent system:  
 �Y = 1                                                      (25) 

 �.4�a3/ = 0.                                              (26) 

 
It is preferable to obtain reliability expressions by 
neither of the methods, but by a disjointness 
method [31]. If a reliability expression for a 
coherent system is obtained by a disjointness 
method, then it enjoys the following properties:  
 

1. It is normally in s-o-p form; otherwise it can 
be readily expanded to such a form. Its 
terms are strictly additive. No numerals 
appear in it.  

2. In any two added terms, there is                        
an element � whose reliability ��  appears   
in one of the two terms and                 
whose unreliability ��  appears in the other 
term.  

3. �  has a single all- � term and no all- � 
terms, and % has a single all-� term and no 
all-� terms. 

4. The highest possible cardinality (number of 
literals) for any term is the number of 
components in the system.  

5. The lowest possible cardinality in any term 
is: 
 

a. For ���: the length of the system, i.e. the 
smallest cardinality (number of 
components) for a minimal s-t path. 

b. For %��: the width of the system, i.e. the 
smallest cardinality for a minimal s-t 
cutset.  

c. For �Y: the number of components in a 
spanning tree, i.e. (| − 1/. 

d. For %Y: the smallest degree (number of 
incident branches) of a node, i.e. the 
smallest cardinality for a vertex cutset.  

 
It is easy to see that the above properties are 
enjoyed by (9), (12), (14), (16). If the components 
reliabilities are allowed to be equal, the reliability 
function becomes a polynomial of degree  � . 
Properties of these polynomials are discussed in 
[31] for ���, and in [32] for �Y.  
 

6. THE CASE OF IMPERFECT NODES OF 
UNLIMITED CAPACITIES   

 
If the | nodes of the network are imperfect, the 
reliability �  becomes a function of ( � N |/ 
variables, viz. � = �.�3,  �4, … ,  �#,  �#3, �#4, … , �#z/ . The 
exhaustive tests of part 4 still apply in this case. 
However, the following modifications should be 
noted. 
 
In Test 1: The number of system states 
increases to 2#{z rather than 2#. 
 
In Test 2: For ���: a) the number of minimal s-t 
paths remains the same but each path is 
modifying by multiplying it by the success of      
the nodes through which it passes, and               
b) the set of minimal s-t cutsets is             
enlarged to include all feasible s-t branch-node 
cutsets. 
 

For �Y:  a) the spanning trees terms are   
multiplied each by the successes of all the 
nodes, and b) the set of minimal network    
cutsets is enlarged to contain the failure of each 
node. 
 

In Test 3: Some of the nodes may be included 
beside some admissible branches in the set of 
keystone elements used in the network 
decomposition.  
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Some work can be saved if it is noted that in ��� 
the reliabilities   �#� and  �#� of the input and 

output nodes appear as multiplicative factors, i.e. 
 ��� = �#�  �#� e���P��#��� �#� ������ #���� ��� ��� �¡� �   (27) 

 
Hence �#� and  �#� can be factored out and 

removed from further consideration. More saving 
is accomplished in testing �Y  since the 
reliabilities of the different nodes appear as 
multiplicative factor, i.e.  
 �Y =  �#¢  �#£ … �#¤ e�YP��KK #���� ��� ��� �¡��     (28) 

 
No significant saving is obtained if %��  or %Y 
expressions are handled. 
 

6.1 Example 9 
 
If both nodes and branches of the system in Fig. 
1 are imperfect, the terminal-pair reliability is [37]: 
 � = �3i =  �#¢ �#¥W�3�#4�i N �4�#E�j N�3�#4�E�#E�j N �4�#E�E�#4�i −�3�4�#4�#E�i�j − �3�#4�#E�E�i�j −�3�4�#4�#E�E�i − �3�4�#4�#¦�E�j −�4�#£�#E�E�i�j N 2�3�4�#4�#E�E�i�j/.     (29) 

 

This expression is multiaffine in its 9 variables. 
To prove its correctness, 512 checks are needed 
by Test 1, but only 15 (or 13) checks are needed 
by Test 2. The checks of Test 2 are to see that � = 1   for the paths �3�3�4�i�i, �3�4�E�j�i, �3�3�4�E �E�j�i, �3�4�E�E�4�i�i ,  

and that � = 0  for the cutsets ��3, �3�4, ��4�4, ��E�3, ��4��E, �i�j, �3�E�j, �4�E�i, ��4�j, ��E�i, ��i.  
 
Alternatively, the factor �#3 �#i  can be dropped 

from (29) and the reminder of � checked to be 1 
for �3�4�i, �4�E�j, �3�4�E�E�j, �4�E�E�4�i  and 
to be 0 for the previous set of cutsets excluding ��3 and ��i. 
 

7. CONCLUSIONS 
 

This paper presents three exhaustive tests to 
show the correctness of reliability expressions in 
flow networks. The tests apply to reliability as 
well as unreliability expressions for coherent and 
noncoherent systems. All the tests and other t 
results are proved and illustrated by examples. 
The problem of proving the correctness of a 
reliability expression seems to have a complexity 
of the same order as that of the problem of 
reliability evaluation itself. This means that the 
exhaustive tests become prohibitively time-

consuming for large systems, even when the 
computer is used to implement them. Therefore, 
a reliability analyst may feel content, from a 
practical point of view, just to check the general 
properties of the expression at hand, and to try a 
few sample checks which constitute only a part 
of one of the tests.  
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APPENDIX: THE PROOFS OF RULES AND TESTS 
 
Proof of rule 1: The Total Probability Theorem is used to expand the reliability function �.�3, … ��a3 , �� , ��{3 , … , �#/ about its i-th variable [14].  
 �.�3, … ��a3 , �� , ��{3 , … , �#/ = .1 − ��/�.�3, … , ��a3, 0, ��{3, … , �#/ N ���.�3, … , ��a3, 1, ��{3, … , �#/ =�.�3, … , ��a3, 0, ��{3, … , �#/ N ��e �.�3, … , ��a3, 1, ��{3, … , �#/ − �.�3, … , ��a3, 0, ��{3, … , �#/P               .30/ 
 
 
Equation (30) means that �.�/ is a first-degree polynomial in �� where � = 0,1, … , �. Now to prove that �.�/ is completely specified by 2# coefficients, mathematical induction is used [14]. The result is true 
for � = 1 since �.�3/ is a first-degree polynomial in �3 , i.e. �.�3/ = ,Y N ,3�3 and hence is specified 
by 23  coefficients. If the result is assumed true for � = 0 − 1 then it is also true for � = 0. This is 
because the function �.�3, �4, … , �-/ of 0 variables is [14]:  

 �W�3, �4 , … , �-a3 , �-X = W1 − �-X�W�3, �4, … , �-a3, 0X N �-�W�3, �4, … , �-a3, 1X.                                             .31/ 

 

The function �W�3, �4, … , �-a3, 0X  and �W�3, �4, … , �-a3, 1X  of .0 − 1/  variables are specified by 2-a3 

coefficients each, hence from (31) the function �W�3, �4 , … , �-a3 , �-X of 0  variables is specified by .2-a3 N 2-a3/ = 2-coefficients. Hence the result is true for any �.  QED 

 

Proof of Test 1: By rule 1, �.�/ must be multiaffine, and hence it can be given by the general form 
(5). If the input vector � is allowed to take the values � = �� where � = 0,1, … , .2# − 1/ which are all the 
possible values it can take when its �  components are restricted to the values 0 or 1, the 2# 
dimensional vector `.�/  takes 2#  linearly independent values. If the reliability expression �.�/ 
satisfies the 2#linearly independent equations:  
 �.��/ = `2.�/ ,           � = 0,1, … , .2# − 1/ 
 
which can be combined into a single matrix equation of the form [14] 
 
  

� = § �.�Y/�.�3/…�.�.4�a3/ /¨ = ⎣⎢
⎢⎡ `2.�Y/`2.�3/…`2W�.4�a3/X⎦⎥

⎥⎤     , = e`P,   

 
 
Then the matrix e`P has full rank since its rows `2.��/ are linearly independent, and hence can be 
inverted to yield the unique value = e`Pa3� . Therefore, under the conditions stated in the test, the 
reliability expression is determined uniquely [14].  QED 
 
Proof of rule 2:  For each M such that M subsumes D: C = 1 implies D = 1, but D = 1 implies � is 
correct, hence C = 1 implies � is correct.  QED 
 
Proof of Test 2: According to rule 2, set a guarantees that � yields correct results for all success 
states of the system, while set b guarantees its correctness for all failure states. Hence � yields 

.32/ 
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correct results for all states of the system, and since it is multiaffine, then according to test 1, it is 
correct. No member of the sets a or b is redundant; for each member there is at least one state 
covered by that member alone. Hence the amount of work needed by test 2 is minimal. QED 
 
Proof of Test 3: Without loss of generality, the keystone variables can be considered as the � 
variables in c that appear first, hence by successive applications of total probability theorem, the 
reliability �.�/ is [14]:  
 �.�/ = �3�4 … �]  �.0,0, … ,0, �]{3, … , �#/ N �3�4 … �]  �.1,0, … ,0, �]{3, … , �#/ N ⋯

+ �3�4 … �]�(1,1, … , 1, �]{3 , … �#)                                                                                   (33) 

    

 Therefore, if �(�)  is multiaffine in the keystone variables and the conditional reliabilities 
�(0,0, … , �]{3, … , �#), … , ¯'*. are correct, then �(�) is correct, and vice versa.  QED 
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