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ABSTRACT 
 

Recently, breast cancer is one of the most popular cancers that women could suffer from. The 
gravity and seriousness of breast cancer can be evidenced by the fact that the mortality rates 
associated with it are the second highest after lung cancer. For the treatment of breast cancer, 
Mammography has emerged as the one whose modality when it comes to the defection of this 
cancer is most effective despite the challenges posed by dense breast parenchyma. In this regard, 
computer-aided diagnosis (CADe) leverages the mammography systems’ output to facilitate the 
radiologist’s decision. It can be defined as a system that makes a similar diagnosis to the one done 
by a radiologist who relies for his/her interpretation on the suggestions generated by a computer 
after it analyzed a set of patient radiological images when making. Against this backdrop, the 
current paper examines different ways of utilizing known image processing and techniques of 
machine learning detection of breast cancer using CAD – more specifically, using mammogram 
images. This, in turn, helps pathologist in their decision-making process. For effective 
implementation of this methodology, CADe system was developed and tested on the public and 
freely available mammographic databases named MIAS database. CADe system is developed to 
differentiate between normal and abnormal tissues, and it assists radiologists to avoid missing 
breast abnormalities. The performance of all classifiers is the best by using the sequential forward 
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selection (SFS) method. Also, we can conclude that the quantization grey level of (gray-level co-
occurrence matrices) GLCM is a very significant factor to get robust high order features where the 
results are better with L equal to the size of ROI. Using an enormous number of several features 
assist the CADe system to be strong enough to distinguish between the different tissues. 
 

 

Keywords:  CAD; breast cancer; medical image processing; feature extraction; digital mammography; 
feature selection; classifications; computer applications in medicine. 

 
1. INTRODUCTION  
 
In the recent past, many researchers have 
developed CADe systems to classify and detect 
abnormalities in the breast [1,2]. In many 
systems, certain some common stages can be 
achieved in order to find suspicious lesions. Fig. 
1 depicts these stages. Salama et al. [3-5] 
developed a new Computer-Aided Diagnosis 
(CAD) system is proposed for breast cancer 
diagnosis in digital mammography. 
 
Digitized mammography databases were used 
for developing our CADe system in various 
stages, commencing with the pre-processing 
phase where the region surrounding the breast 
was segmented by applying techniques of image 
processing for lowering the mammograms’ noise 
ratio [6,7]. Meanwhile, the next stage entailed the 

selection of the region of interest (ROI). Here, 
several suspicious ROIs are selected to identify 
them as either abnormal or normal lesions. The 
following stage encompasses the feature 
extraction, whose objective is to ensure the 
lesions' characterization and distinguish actual 
lesions from their falsely detected counterparts; 
several features were calculated for the selected 
ROI. After that, we performed feature selection 
analysis, in which denotes a vital step in 
developing the classification system. In order to 
have a successful classification scheme, it was 
paramount to select the appropriate method and 
integrate them effectively into the model. 
Meanwhile, classification was performed in the 
last stage. Here, we fed the selected features 
into the classification system to train it to 
differentiate between normal and abnormal 
tissue. 

 

 
 

Fig. 1. Visual representation of a generic CADe system 
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Two stages were followed in this study, the 
training stage followed by the testing stage. 50% 
of the database was used in the testing stage. In 
the training stage, normal images and cancerous 
images were used to train the system to 
differentiate between them. The second stage 
encompassed a testing stage where we 
introduced the system to a new image and 
ascertain the accuracy of detection results. 
 

2. LITERATURE REVIEW  
 
This section includes some extant literature 
studies which emphasized the use of CADe 
systems to classify problematic areas of the 
breast. These studies were intended to make 
improvements in the diagnostic performances of 
radiologists by classifying the aforementioned 
regions. Although there is a vast body of 
research papers to ascertain optimal 
performances of the CADe system, not many 
studies have been conducted pertaining to the 
subject we are intending to address.  
 

False positives (FP) has been reduced in breast 
density classification by the CAD system 
enhanced by N. Vállez et al. [8] who devised a 
system of automating the classification of the 
density of the breast and facilitate timely 
identification and evaluation of lesions. They 
proposed the use of the CAD system for 
grouping the mammograms into various classes 
of tissues (BIRADS), basing this scheme of 
classification on as many as 298 features. Using 
some intuitive algorithms for detection, they 
undertook the testing with nearly 1460 images. 
According to the findings, 322 mammograms of 
the dataset (MIAS) demonstrated the 
classification of 99.76% of all samples.  
 

In another study, [9], S. Pohlman et al. were able 
to successfully detect the sensitivity of 97% from 
as many as 51 mammographic images using 
their ingenious method for intelligent region-
expansion in order to group cancerous clusters 
from the normal background. 
 

Similarly, Wei et al. [10] examined the possibility 
of differentiating between clusters and normal 
tissue in mammograms by analyzing textures 
using many different resolutions. Digitized 
mammograms regions of interest (ROIs) were 
broken down into different scales using wavelet 
transform. Optimal features, as well as the linear 
discriminant classifier, were selected using a 
stepwise linear discrimination technique.   
 

Meanwhile, with a view to reducing instances of 
inaccurate positives when detecting masses on 

the breast, Oliver et al. [11] suggested a 
technique that extracted features using the 
2DPCA (or Two-Dimensional Principal 
Component Analysis) algorithm. For assessment 
purposes, they used ROC (Receiver Operating 
Characteristics) evaluation. 
 

Akram I. Omara et al. [12] meanwhile made use 
of  k-nearest (voting) neighbor as well as MDC 
(minimum distance classifier) in order to extract 
28 levels of details of wavelet coefficients by 
applying  wavelet decomposition on the locally 
processed image and used them as features to 
differentiate between  abnormal lesions and 
normal tissue.  
 

In a similar vein, flow-like textural information for 
analysis methods in mammography was 
suggested by Mudigonda et al. [13]. For the 
purpose of identifying detected regions as false 
positives or accurate regions of masses, they 
successfully identified and segmented the mass 
regions, following which they went on to classify 
them as either benign or malignant areas. They 
accomplished this task by leveraging the method 
of logistic regression features of computing 
texture using GLCMs (gray-level co-occurrence 
matrices).  
 

Li et al. [14] made an algorithm to trace masses 
by following a couple of steps. In step one - 
preliminary segmentation of suspicion areas was 
obtained using an adaptive threshold of grey 
levels. In the subsequent step, features based on 
contrast, regions, size, and shape were used 
across the selected areas in order to classify 
them as either normal tissue or as masses.   
 

J. Dheeba et al. developed a CAD-bases system 
to trace cases of breast cancer [14] using a 
classifier called PSOWNN (particle swarm 
optimized wavelet neural network). It is 
noteworthy that the algorithm for detecting 
proposed abnormality facilitated the classification 
of potentially problematic areas close to the 
breast through the application of a pattern-based 
classifier. The database included 54 patients and 
216 mammograms (collated from screening 
centers. According to the finding, this algorithm 
helped identify the specificity of 92.105% and 
sensitivity of 94.167%.  
  

3. METHODOLOGY  
 

In this chapter, we developed a CADe system by 
using MIAS database [15]. This study includes 
some procedures to achieve the system. The first 
step is the preprocessing step (peripheral 
enhancement of breast) which is discussed in 
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detail in chapter 3. Subsequently, we excerpted a 
set of ROIs from mammograms. Thereafter, we 
extracted some features from these ROIs using 
as many as seven methods of selection and 
making certain comparisons. These methods are 
Unpaired Student test, KS test (or Kolmogorov-
Smirnov test), W-test (or Wilcoxon signed-rank 
test), SFS/SBS test, (Sequential Forward and 
Backward Selection), BBS test (or Branch and 
Bound Selection) and SFSS (or Sequential 
Floating Forward Selection). Then we used some 
classifiers to classify between lesions using 
classifiers such as KNN (K-Nearest Neighbor) 
classifier, “SVM (Support Vector Machine) 
classifier, LDA (Linear Discriminant) classifier, 
QDA (Quadtradic Discriminant Analysis) 
classifier, NB (Naïve Bayes) classifier as well as 
ANN (Artificial Neural Networks) classifier. All 
these classifiers can be utilized for the purpose 
of performing a hard classification, where the 
output is a binary class label, therefore, the (0) 
label for normal and (1) label for abnormal or 
(cancer) breast. Finally, we evaluated the CADe 
system performance using several indices such 
as specificity, sensitivity, positive and negative 
predictive value, respectively, and Cohen-k 
factor, among others.  
 

The entire simulation was performed in 
MATLAB® (R2016b) software in i7-4500M CPU 
(Intel® Core™) @ 2.40GHz system with 16GB 
RAM memory. Meanwhile, the operating system 
was Windows 7 Home Premium 64-bit. 
 

The proposed system was divided into the 
following blocks. 
 

3.1 Preprocessing  
 

The first stage in the CAD system is called the 
preprocessing in order to augment the projected 
breast peripheral area’s (uncompressed portion). 
We made use of the processing technique in 

order to reach this stage that is credited to Tao 
Wu et al. [16].  

 
3.2 ROI Extraction  
 
Using the information provided by the MIAS 
dataset for each mammogram, we used 72 
normal and 72 abnormal mammograms. In 
addition, we extracted 144 centered ROIs using 
a window whose size was 32×32 pixels. Fig. 2 
illustrates some types of the masses which are 
extracted from the MIAS database mammograms 
with the white circle surrounding the masses in 
each mammogram. 
 

3.3 Features Extraction 
 
This section explains one of the most important 
stages of the CAD system that directly affect the 
performance of the system. Features refer to the 
texture’s quantitative measures for elucidating an 
image’s salient features. We can express these 
characteristics as mathematical descriptors to 
help in distinguishing between different tissues 
[17-19].  
 
In this study, we extracted a range of different 
features for each selected ROI from spatial as 
well as transform domains. In addition, we 
obtained a total of seven hundred (700) different 
features from each ROI as following: First, 
Second and Higher Order Statistical Features, 
Zernike moment features and Wavelet Transform 
Features. 
 

3.4 Wavelet Transform Features 
 
In today’s day and age, wavelet transformation 
represents one of the most effective 
transformations involving time-frequency. In our 
study, we implemented the wavelet 
decomposition on the problem area of interest 

 

 
 

Fig. 2. An Example of masses of some MIAS mammogram types. The first one from the left: 
Spiculated mass (mdb148). The second: Circumscribed mass (mdb028). Third: ill-defined mass 
(mdb265). Fourth:  Architectural distortion mass (mdb125). Fifth: Asymmetry mass (mdb102) 
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via the MATLAB (Wavelet Toolbox). The wavelet 
transform calculates the matrix of approximation 
coefficients (LL) as well as other coefficients 
matrices - LH, HL, and HH from the input matrix 
using the wavelet Daubechies [20]. Here the 
input matrix is specific to each ROI. Several 
research papers used the wavelet transform to 
get specific features and used them in CAD 
system development. 
 

In this study, we used only one level of wavelet 
transform using the MATLAB Wavelet Toolbox. 
Furthermore, we implemented the wavelet 
decomposition on each ROI as the input image 
to procure the aforementioned matrices. LL 
matrix meanwhile was not part of this study. At a 
subsequent stage, we used these matrices 
during the feature-extraction stage of the planned 
CADe system. 
 

In our study, we used the idea proposed by 
Dhanashree Gadkari for calculating averaged 
GLCM from each wavelet coefficient matrix of the 
input image. However, there is a difference 
between our work and theirs. While they 
conducted their study on the Radar database, we 
computed averaged GLCMs for ROIs of 
mammograms in our study. It is notable that we 
computed two GLCMs on an average for every 
coefficient matrix. Four varied GLCMs were 
observed at divergent angles every time value 
was assigned. Subsequently, the average of 
these four GLCMs was used to calculate the total 
average. Under this step, we got a total of six (6) 
averaged GLCMs for each ROI.  
 

Thereafter, the six resulting averaged GLCMs 
were used to extract as many as 16 features 
from each single GLCM as following: Entropy, 
Maximum probability, Homogeneity, Inverse 
Different Moment (Homogeneity2), Variance, 
Energy (Uniformity), autocorrelation, Correlation 
information1, Correlation information2 and seven 
(7) invariant moments. The mathematical 
formulas of these features are elucidated in 
Table 4 with the exception of the formulas of 
invariant features. Fig. 3 shows how we obtained 
the averaged GLCM. The total features extracted 
from the wavelet transform part are ninety-six 
(96) features for each ROI.  
 

The mathematical formulas of the invariant 
features are described as following: 
 
An order’s (p + q) 2D movement of digital image 
f(x,y) of the size M×N can be calculated as:  
 

��� =  ∑ ∑ �����
�� �

� ��
�� � �� �(�,�)          (1) 

where p = 0, 1, 2, … are integers. Meanwhile the 
other order movement (central) (p + q) is 
calculated as:  
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We can derive seven moments (invariant) from 
the second and third moments as follows:  
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The final feature set is composed of 700 features 
for each ROI. Table 5 as shows the number of 
features extracted from each feature type. 
 

3.5 Normalization of Extracted Features 
 

Following the extraction of the feature set, we are 
required to rescale the features in the range of 
[0, 1] or [−1, 1] to make them independent of 
each other. In this regard, the selection of the 
target  range  is  predicated  on the  data’s 
nature and scope. Features normalization is an
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(a)                                                                              (b) 

 
Fig. 3 (a) A separated GLCMs at different angles with a constant value of d for all coefficient 

matrices. (b) Average GLCM 
 

Table 1. Summary of the extracted features 
 
Features categories Number of extracted features 
First-order statistical features 39 
Second-order statistical features 400 
Higher-order statistical features 44 
Wavelet transform features 96 
Zernike moment features 121 
Total number of features 700 

 
important step to simplify the value of the 
coefficient to avoid any statistic bias in the 
classification stage [21]. For this purpose, we 
applied a common approach to normalization 
referred to as Min-Max scaling wherein the data 
is scaled to a range [0,1] using the following 
formula: 

 

                        (13) 
 
where x denotes the original value of the feature, 
���( �) refers to the maximum value in the 
features vector, ���� signifies the minimum 
value in the features vector and ����� denotes 
the feature’s normalized feature. 

 
                 3.6 Features Selection  

  
The stage of selecting features denoted a vital 
component of all classification schemes since it 
aims to select from the extracted feature set a 
number of features that are most relevant to the 
predictive modeling problem and yield minimum 
classification error. A CAD system’s performance 
is predicated on the efficacy with which selection 
of the features is undertaken  [22]. In addition, 
methods of selecting feature enable us to lower 
computation time, make improvements in the 
performance of prediction, and facilitate well-
informed decisions relating to applications that 
entail the use of pattern recognition or machine 

learning in order to decipher data in a better 
manner.  
 

The unpaired t-test is performed for the 
hypothesis as per which data is divided into 
varying distributions (e.g. Here normal and 
abnormal lesions) with random samples sourced 
from equal variances as well as means, as 
opposed to the other alternative wherein there is 
no equality in the means. The t-test determines 
the amount of overlap between the two 
distributions. The ability of differentiation is 
determined by knowing this amount. In this 
study, we determined the significance level as 
following: α = 0.05. In case there is a difference 
between p-value and significance level wherein 
the former is less than the latter,  we can then 
differentiate between these two sets which come 
from two different distributions by this feature 
[21].  

 

3.7 Classification Stage  
 
The classification is the final stage in any CAD 
system’s development and entails the 
identification of categories to which novel 
observations belong, premised on the data’s 
training set [3]. Features selected in the previous 
stage are made to pass the classifier in both the 
phases. During the training phase, the selected 
features of training dataset which have already 
been labeled as normal or as abnormal are 
passed to the classifier, and the classifier is 
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trained. In this stage, we used the training 
dataset which consists of 36 normal ROIs and 36 
abnormal ROIs from the MIAS database. For this 
stage, we used the testing dataset containing 36 
normal ROIs and 36 abnormal ROIs from the 
same dataset. This study witnessed the use of 
multiple classifiers (7) that have already been 
mentioned before. 

 
4. RESULTS AND DISCUSSION  
 
The total number of ROIs used for the proposed 
CADe system from the MIAS database was 144 
mammogram images (including 72 
mammograms for normal case and 72 
mammograms for abnormal lesions are (41 
benign and 31 malignant)). The outcome of the 
feature selection resulted in seven hundred 
various features from each ROI of size 32x32 
pixels selected from each mammogram. These 
features are 38 statistical features of the first 
order, 400 statistical features of the second 
order, 44 statistical features of a high order, and 
96 features extricated from wavelet transform 
and also, one hundred and twenty-one features 
extracted from the Zernike moment of order 
twenty. Following this selection, we utilized as 
many as seven methods of features selection 
from the statistics and Pattern Recognition 
Toolbox. The statistics toolbox which are T-test, 
W-test, and KS-test, as well as pattern 
recognition toolboxes: SFFS, SFS, SBS, and 
BBS. We applied KNN with K=1 and 3, SVM, 
LDA, QDA, NB and ANN for classification of 

each selection method and also, we studied 
withal classifiers' behavioral pattern using all 
aforementioned methods of selection. We 
evaluated all classifiers' performances with each 
selection method by calculating PPV, NPV, 
sensitivity/specificity, Cohen-K factor, sensitivity, 
ROC curve and overall accuracy. Both classes' 
confusion matrices are used for obtaining the 
indices. We and make comparisons between 
different classifier performances wherein the 
selection of each method was done in an 
independent manner.   

 
In this study, we used two different values of (L) 
of the GLCM equal at 8 and 32. The training and 
testing of KNN, SVM, LDA, QDA, NB and ANN 
classifiers were based on independent half and 
half training and testing sets with randomly 
chosen of each from the MIAS database are 
selected according to the available number of the 
samples. The normalization min-max method 
was utilized to make each feature selection 
values range between the zero and one. It can 
avoid the numerical instabilities in the operation 
of training the classifiers and let differences in 
various features to be well represented equally 
with no dominating features that occur to have 
broader numeric ranges. 

 
Tables 2 and 3 summarize the confusion matrix 
entries computed for the aforementioned 
classifiers through the use of aforementioned 
methods of selecting features at the quantization 
gray levels’ two levels (L=8 and 32 respectively). 

 
Table 2. Confusion Matrices in CADe system of quantization gray level at (L=8) 

 

 T-test W-test and KS-test SBS SFS SFFS BBS 

N A N A N A N A N A N A N A 

KNN-1 N 35 3 35 4 35 4 35 1 36 3 36 3 34 3 

A 1 33 1 32 1 32 1 35 0 33 0 33 2 33 

KNN-3 N 33 3 34 3 34 3 36 1 36 1 36 1 33 1 

A 3 33 2 33 2 33 0 35 0 35 0 35 3 35 

SVM N 35 0 35 0 35 0 35 0 36 0 36 0 34 2 

A 1 36 1 36 1 36 1 36 0 36 0 36 2 34 

LDA N 34 4 34 5 34 5 34 2 35 2 35 3 33 2 

A 2 32 2 31 2 31 2 34 1 34 1 33 3 34 

QDA N 33 3 33 3 33 3 34 1 35 5 35 4 33 2 

A 3 33 3 33 3 33 2 35 1 31 1 32 3 34 

NB N 33 3 33 3 33 3 34 1 35 5 35 4 33 2 

A 3 33 3 33 3 33 2 35 1 31 1 32 3 34 
ANN N 31 2 36 8 36 8 34 1 36 4 36 2 34 1 

A 5 34 0 28 0 28 2 35 0 32 0 34 2 35 
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Table 3. Confusion matrices in CADe system of quantization gray level at (L=32) 
 
 T-test W-test and KS-test   SBS   SFS   SFFS   BBS 

N A N A N A N A N A N A N A 
KNN-1 N 36 2 36 4 36 4 36 1 36 0 36 0 34 3 

A 0 34 0 32 0 32 0 35 0 36 0 36 2 33 
KNN-3 N 33 3 33 4 33 4 34 3 36 1 36 0 33 1 

A 3 33 3 32 3 32 2 33 0 35 0 36 3 35 
SVM N 35 0 36 0 36 0 35 2 36 0 36 0 34 2 

A 1 36 0 36 0 36 1 34 0 36 0 36 2 34 
LDA N 34 5 34 5 34 5 34 4 34 2 34 2 33 2 

A 2 31 2 31 2 31 2 32 2 34 2 34 3 34 
QDA N 34 4 35 6 35 6 33 4 35 11 33 2 33 2 

A 2 32 1 30 1 30 3 32 1 25 3 34 3 34 
NB N 34 4 35 6 35 6 33 4 35 11 33 2 33 2 

A 2 32 1 30 1 30 3 32 1 25 3 34 3 34 
ANN N 33 3 33 0 33 0 32 1 36 1 36 2 32 1 

A 3 33 3 36 3 36 4 35 0 35 0 34 4 35 
 
Tables 4, 5, 6, 7, 8, and 9 summarize the 
different measures calculated from the findings 
observes in Tables 2 and 3, respectively in order 
to better decipher the outcomes of classifiers 
such as sensitivity, specificity, PPV, NPV, 
accuracy, AUC, Cohen-K factor, where each 
independently denotes the performance indices 
of the CAD system at different selection methods 
with the following quantization levels: L = 8 and L 
= 32. There is a compelling case for comparing 
the performances of all classifiers with each 
selection method, but we will try to accommodate 
as much information as possible. 

 
Fig. 4 illustrates ROC plots concerning all 
classifiers (KNN with K=1 and K= 3, SVM, LDA, 
QDA, NB and ANN) with all selection methods at 
L=8 which that T-test (a), KS and W-test (b), 
SBS (c), SFS (d), SFFS (e), and BBS (f).  

 
Fig. 5 depicts a group of ROC plots concerning 
all classifiers (KNN with K=1 and K= 3, SVM, 
LDA, QDA, NB and ANN) with all selection 
methods at L=32 which that T-test (a), KS and 
W-test (b), SBS (c), SFS (d), SFFS (e), and BBS 
(f). 

 
Our findings show an Az value of (99.7%) with 
Accuracy Ac (100%), a sensitivity of (100%) and 
a specificity of (100%) for SVM classifier in both 
SFS/SFFS selection methods with both of 
quantization gray level (L) of GLCM at L=8 and 
L=32.   

 
From all our results mentioned below, we can 
conclude some the following important points 

from for the proposed CADe detection system 
development such as: 
 

1. SVM classifier achieved the best possible 
results with all feature selection methods 
with gray at L=32 except SBS method 
wherein KNN=1 classifier was the best in 
this case. 

 

2. The worst performance was achieved by 
QDA and NB classifiers with most feature 
selection methods at L=32 except t-test 
wherein LDA classifier was the worst. 

 

3. Features selected by SFS/SFFS methods 
yielded the best classification results for 
most classifiers at L=8 and 32, except QDA 
and NB, which showed the worst findings.  

 

4. When the number of the dataset is 
increased the performance is improved as 
well 

 

5. Using SFFS, SBS, BBS and SFS 
techniques gave better results compared to 
the statistical methods  

 

6. All classifiers were observed to perform 
better when the quantization gray level of 
GLCM was at L=32 as compared to 
another level at L=8. 

 

7. The time consumption for PR-Tool 
methods (SBS, SFS, SFFS and BBS) need 
a long time to select the most powerful 
features, while statistical methods (T-test, 
KS-test and W-test) need a short time with 
both (L=8) and (L=32) in the CAD system. 
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Table 4. CADe performance indices during the T-test involving the classifiers 
 

Levels L = 8 L = 32 
Indices (%) KNN SVM LDA QDA NB ANN         KNN SVM LDA QDA NB ANN 

K=1 K=3  K=1 K=3  
Sensitivity 97.22 91.66 97.22 94.44 91.66 91.66 86.11 100 91.66 97.22 94.44 94.44 94.44 91.66 
Specificity 91.66 91.66 100 88.88 91.66 91.66 94.44 94.44 91.66 100 86.11 88.88 88.88 91.66 
PPV 92.10 91.66 100 89.47 91.66 91.66 93.93 94.73 91.66 100 87.17 89.47 89.47 91.66 
NPV 97.05 91.66 97.29 94.11 91.66 91.66 87.17 100 91.66 97.29 93.93 94.11 94.11 91.66 
Accuracy 94.44 91.66 98.61 91.66 91.66 91.66 90.27 97.22 91.66 98.61 90.27 91.66 91.66 91.66 
AUC 94.93 91.99 98.57 92.73 91.62 91.62 90.27 96.80 92.13 98.63 91.57 94 94 92.09 
Cohen- K 88.88 83.33 97.22 83.33 83.33 83.33 80.55 94.44 83.33 97.22 80.55 83.33 83.33 83.33 

 
Table 5. CADe performance indices during the KS and W test involving the classifiers 

 
Levels L = 8 L = 32 
Indices (%)         KNN SVM LDA QDA NB ANN        KNN SVM LDA QDA NB ANN 

K=1 K=3  K=1 K=3  
Sensitivity 97.22 94.44 97.22 94.44 91.66 91.66 100 100 91.66 100 94.44 97.22 97.22 91.66 
Specificity 88.88 91.66 100 86.11 91.66 91.66 77.77 88.88 88.88 100 86.11 83.33 83.33 100 
PPV 89.74 91.89 100 87.17 91.66 91.66 81.81 90 89.18 100 87.17 85.36 85.36 100 
NPV 96.96 94.28 97.29 93.93 91.66 91.66 100 100 91.42 100 93.93 96.77 96.77 92.30 
Accuracy 93.05 93.05 98.61 90.27 91.66 91.66 88.88 94.44 90.27 100 90.27 90.27 90.27 95.83 
AUC 92.93 93.42 98.57 91.57 91.62 91.62 90.89 93.38 90.61 99.69 91.57 92.59 92.59 97.79 
Cohen- K 86.11 86.11 97.22 80.55 83.33 83.33 77.77 88.88 80.55 100 80.55 80.55 80.55 91.66 
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Table 6. CADe performance indices on the usage of SBS 
 

Levels L = 8 L = 32 
Indices (%) KNN SVM LDA QDA NB ANN        KNN SVM LDA QDA NB ANN 

K=1 K=3  K=1 K=3  
Sensitivity 97.22 100 97.22 94.44 94.44 94.44 94.44 100 94.44 97.22 94.44 91.66 91.66 88.88 
Specificity 97.22 97.22 100 94.44 97.22 97.22 97.22 97.22 91.66 94.44 88.88 88.88 88.88 97.22 
PPV 97.22 97.29 100 94.44 97.14 97.14 97.14 97.29 91.89 94.59 89.47 89.18 89.18 96.96 
NPV 97.22 100 97.29 94.44 94.59 94.59 94.59 100 94.28 97.14 94.11 91.42 91.42 89.74 
Accuracy 97.22 98.61 98.61 94.44 95.83 95.83 95.83 98.61 93.05 95.83 91.66 90.27 90.27 93.05 
AUC 97.08 98 98.57 95.67 95.39 95.39 96.60 98 95.19 95.85 93.40 91.06 91.06 92.29 
Cohen- K 94.44 97.22 97.22 88.88 91.66 91.66 91.66 97.22 86.11 91.66 83.33 80.55 80.55 86.11 

 
Table 7.  CADe performance indices on the usage of SFS 

 
Levels L = 8 L = 32 
Indices (%) KNN SVM LDA QDA NB ANN        KNN SVM LDA QDA NB ANN 

K=1 K=3  K=1 K=3  
Sensitivity 100 100 100 97.22 97.22 97.22 100 100 100 100 94.44 97.22 97.22 100 
Specificity 91.66 97.22 100 94.44 86.11 86.11 88.88 100 97.22 100 94.44 69.44 69.44 97.22 
PPV 92.30 97.29 100 94.59 87.50 87.50 90 100 97.29 100 94.44 76.08 76.08 97.29 
NPV 100 100 100 97.14 96.87 100 100 100 100 100 94.44 96.15 96.15 100 
Accuracy 95.83 98.61 100 95.83 91.66 91.66 94.44 100 98.61 100 94.44 83.33 83.33 98.61 
AUC 95.60 98.23 99.69 96.50 93.31 93.31 95.70 99.69 98.72 99.69 95.67 85.16 85.16 98.72 
Cohen- K 91.66 97.22 100 91.66 83.33 83.33 88.88 100 97.22 100 88.88 66.66 66.66 97.22 
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Table 8. CADe performance indices on the usage of SSFSS 
 
Levels L = 8 L = 32 
Indices (%)         KNN SVM LDA QDA NB ANN       KNN SVM LDA QDA NB ANN 

K=1 K=3  K=1 K=3  
Sensitivity 100 100 100 97.22 97.22 97.22 100 100 100 100 94.44 91.66 91.66 100 
Specificity 91.66 97.22 100 91.66 88.88 88.88 94.44 100 100 100 94.44 94.44 94.44 94.44 
PPV 92.30 97.29 100 92.10 89.74 89.74 94.73 100 100 100 94.44 94.28 94.28 94.73 
NPV 100 100 100 97.05 96.96 96.96 100 100 100 100 94.44 91.89 91.89 100 
Accuracy 95.83 98.61 100 94.44 93.05 93.05 97.22 100 100 100 94.44 93.05 93.05 97.22 
AUC 95.81 98 99.69 96.27 95.21 95.21 97.89 99.69 99.69 99.69 95.09 93.79 93.79 97.00 
Cohen- K 91.66 97.22 100 88.88 86.11 86.11 94.44 100 100 100 88.88 86.11 86.11 94.44 

 
Table 9. CADe performance indices on the usage of BBS 

 
Levels L = 8 L = 32 
Indices (%)        KNN SVM LDA QDA NB ANN         KNN SVM LDA QDA NB ANN 

K= K=3  K=1 K=3  
Sensitivity 94.44 91.66 94.44 91.66 91.66 91.66 94.44 94.44 91.66 94.44 91.66 91.66 91.66 88.88 
Specificity 91.66 97.22 94.44 94.44 94.44 94.44 97.22 91.66 97.22 94.44 94.44 94.44 94.44 97.22 
PPV 91.89 97.05 94.44 94.28 94.28 94.28 97.14 91.89 97.05 94.44 94.28 94.28 94.28 96.96 
NPV 94.28 92.10 94.44 91.89 91.89 91.89 94.59 94.28 92.10 94.44 91.89 91.89 91.89 89.74 
Accuracy 93.05 94.44 94.44 93.05 93.05 93.05 95.83 93.05 94.44 94.44 93.05 93.05 93.05 93.05 
AUC 95.36 95.27 95.09 94.11 94.11 94.11 96.60 95.36 95.27 95.09 94.11 94.11 94.11 92.29 
Cohen- K 86.11 88.88 88.88 86.11 86.11 86.11 91.66 86.11 88.88 88.88 86.11 86.11 86.11 86.11 
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(a) (b) 
 

(c) (d) 
 

(e) (f) 
                                                                               
Fig. 4. ROC curves concerning all classifiers and involving all selection methods at L=8 which 

that (a): T-test, (b): KS and W-test, (c): SBS, (d): SFS, (e): SFFS, and (f): BBS 
 

(a) (b) 
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(c) (d) 
 

(e) 
(f) 

                                                                                 
Fig. 5. ROC curves concerning all classifiers and involving all selection methods at L=32 

which that (a): T-test, (b): KS and W-test, (c): SBS, (d): SFS, (e): SFFS, and (f): BBS 
 
5. CONCLUSIONS 
 

It is a well-known fact that the ability to detect 
breast cancer at an early stage assumes great 
importance in the context of augmenting the rate 
of survival as well and bringing improvements in 
the likelihood of ensuring the provision of 
adequate treatment that yields the best possible 
results. In this context, mammography is 
ubiquitously recognized for being the most 
acceptable tool that facilitates timely detection; 
however, its sensitivity and efficacy is not 
impervious to the expertise of the radiologist of 
the equality of image. 
 

Against this backdrop and in order to resolve the 
challenges mentioned above, we proposed a 
computer-aided detection (CAD) mechanism. 
The system was designed to perform a 
recognition task; more specifically, we used the 
CADe system for the purpose off identifying 
abnormalities in breast lesions in a timely 
manner. The MIAS database was used to 
develop and test the CADe system. A 
combination of several features extracted from its 
ROI was used by the CAD system. In addition, 

CADe system made use of relevant classifiers 
(KNN-1, KNN-3, SVM, LDA, QDA, NB, and ANN) 
for classification stage. 
 

The best performance of the proposed CADe 
system has been achieved by SVM classifier with 
most feature selection methods and especially 
with SFS and SFFS methods where, in this case, 
all samples were correctly classified. The 
performance of all classifiers is the best by using 
SFS method. Also, we can conclude that the 
quantization gray level of GLCM is a very 
significant factor to get robust high order features 
where the results are better with L equal to the 
size of ROI. Using an enormous number of 
several features assist the CAD system to be 
strong enough to distinguish between the 
different tissues. 
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