Automatic differentiation to simultaneously identify nonlinear dynamics and extract noise probability distributions from data

Kaheman, Kadierdan and Brunton, Steven L and Nathan Kutz, J (2022) Automatic differentiation to simultaneously identify nonlinear dynamics and extract noise probability distributions from data. Machine Learning: Science and Technology, 3 (1). 015031. ISSN 2632-2153

[thumbnail of Kaheman_2022_Mach._Learn.__Sci._Technol._3_015031.pdf] Text
Kaheman_2022_Mach._Learn.__Sci._Technol._3_015031.pdf - Published Version

Download (5MB)

Abstract

The sparse identification of nonlinear dynamics (SINDy) is a regression framework for the discovery of parsimonious dynamic models and governing equations from time-series data. As with all system identification methods, noisy measurements compromise the accuracy and robustness of the model discovery procedure. In this work we develop a variant of the SINDy algorithm that integrates automatic differentiation and recent time-stepping constrained motivated by Rudy et al (2019 J. Computat. Phys. 396 483–506) for simultaneously (1) denoising the data, (2) learning and parametrizing the noise probability distribution, and (3) identifying the underlying parsimonious dynamical system responsible for generating the time-series data. Thus within an integrated optimization framework, noise can be separated from signal, resulting in an architecture that is approximately twice as robust to noise as state-of-the-art methods, handling as much as 40% noise on a given time-series signal and explicitly parametrizing the noise probability distribution. We demonstrate this approach on several numerical examples, from Lotka-Volterra models to the spatio-temporal Lorenz 96 model. Further, we show the method can learn a diversity of probability distributions for the measurement noise, including Gaussian, uniform, Gamma, and Rayleigh distributions.

Item Type: Article
Subjects: Digital Academic Press > Multidisciplinary
Depositing User: Unnamed user with email support@digiacademicpress.org
Date Deposited: 06 Jul 2023 04:17
Last Modified: 03 Oct 2024 03:58
URI: http://science.researchersasian.com/id/eprint/1667

Actions (login required)

View Item
View Item